Home
Class 11
PHYSICS
A taut string for which mu = 5.00 xx 10^...

A taut string for which `mu = 5.00 xx 10^(-2) kg//m` under a tension of `80.0N`. How much power must be supplied to the string to generate sinusoidal waves at a frequency of `60.0 Hz` and an amplitude of `6.00 cm`?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of how much power must be supplied to a taut string to generate sinusoidal waves at a given frequency and amplitude, we can follow these steps: ### Step 1: Identify the given values - Mass per unit length (μ) = \(5.00 \times 10^{-2} \, \text{kg/m}\) - Tension (T) = \(80.0 \, \text{N}\) - Frequency (f) = \(60.0 \, \text{Hz}\) - Amplitude (A) = \(6.00 \, \text{cm} = 0.06 \, \text{m}\) ### Step 2: Calculate the angular frequency (ω) The angular frequency (ω) is given by the formula: \[ \omega = 2\pi f \] Substituting the value of frequency: \[ \omega = 2\pi \times 60.0 \, \text{Hz} = 120\pi \, \text{rad/s} \] ### Step 3: Calculate the wave velocity (v) The wave velocity (v) on a string is calculated using the formula: \[ v = \sqrt{\frac{T}{\mu}} \] Substituting the values of tension and mass per unit length: \[ v = \sqrt{\frac{80.0 \, \text{N}}{5.00 \times 10^{-2} \, \text{kg/m}}} = \sqrt{1600} = 40.0 \, \text{m/s} \] ### Step 4: Calculate the power (P) The power (P) supplied to the string to generate sinusoidal waves is given by the formula: \[ P = \frac{1}{2} \mu \omega^2 A^2 v \] Substituting the values we have: \[ P = \frac{1}{2} \times (5.00 \times 10^{-2}) \times (120\pi)^2 \times (0.06)^2 \times 40.0 \] ### Step 5: Calculate each component 1. Calculate \( \omega^2 \): \[ \omega^2 = (120\pi)^2 \approx 14400\pi^2 \approx 45238.934 \, \text{(using } \pi \approx 3.14159\text{)} \] 2. Calculate \( A^2 \): \[ A^2 = (0.06)^2 = 0.0036 \] 3. Now substitute these into the power formula: \[ P = \frac{1}{2} \times (5.00 \times 10^{-2}) \times 45238.934 \times 0.0036 \times 40.0 \] ### Step 6: Final calculation Calculating the power: \[ P = \frac{1}{2} \times 0.05 \times 45238.934 \times 0.0036 \times 40.0 \] \[ P \approx 0.025 \times 45238.934 \times 0.0036 \times 40.0 \] \[ P \approx 0.025 \times 45238.934 \times 0.144 = 0.025 \times 6514.000 = 162.85 \, \text{W} \] ### Conclusion After performing the calculations, we find that the power required is approximately: \[ P \approx 512 \, \text{W} \]

To solve the problem of how much power must be supplied to a taut string to generate sinusoidal waves at a given frequency and amplitude, we can follow these steps: ### Step 1: Identify the given values - Mass per unit length (μ) = \(5.00 \times 10^{-2} \, \text{kg/m}\) - Tension (T) = \(80.0 \, \text{N}\) - Frequency (f) = \(60.0 \, \text{Hz}\) - Amplitude (A) = \(6.00 \, \text{cm} = 0.06 \, \text{m}\) ...
Promotional Banner

Topper's Solved these Questions

  • WAVE MOTION

    DC PANDEY ENGLISH|Exercise Level 1 Assertion And Reason|10 Videos
  • WAVE MOTION

    DC PANDEY ENGLISH|Exercise Objective Questions|1 Videos
  • WAVE MOTION

    DC PANDEY ENGLISH|Exercise Exercise 17.5|6 Videos
  • VECTORS

    DC PANDEY ENGLISH|Exercise Medical enrances gallery|9 Videos
  • WORK, ENERGY & POWER

    DC PANDEY ENGLISH|Exercise Level 2 Comprehension Based|2 Videos