Home
Class 12
PHYSICS
In the Figure shown i1=10e^(-2t) A, i2=4...

In the Figure shown `i_1=10e^(-2t) A, i_2=4A` and `V_C=3e^(-2t)V`. Determine

a. `i_L` and `V_L` b. `V_(ac), V_(ab), V_(cd)`

Text Solution

Verified by Experts

a. Charge stored in the capacitor at time t,
` q=CV_C`
`= (2)(3e^(-2t))`
`= 6e^(-2t)C`
`:. i_c=(dq)/(dt)=12e^(-2t)A`

(Direction of current is form `b` to `O`)
Applying junction rule at `O`,
`i_L=i_1+i_2+i_e=10e^(-2t)+4-12e^(-2t)`
`=(4-2e^(-2t))A`
`[2+2(1-e^(-2t))]A`
`i_L` versus time graph is as show in figure.

`i_L` increases from `2A` to `4A` exponentially .
`V_L=V_(Od)=L(di_L)/(dt) =(4) d/(dt)(4-2^(-2t))`
`=16 e^(-2t)V`
`V_L` versus time graph is an shown in figure.

`V_L` decreases exponentially from `16V` to `0`.
b. `V_(ac)=V_a-V_c`
`V_a-i_1R_1+i_2R_2=V_c`
`:. V_a-V_c=V_(ac)=i_1R1_1-i_2R_2`
substituting the values we have

`V_(ac)=(10e^(-2t))(2)-(4)(3)`
`V_(ac)=(20e^(-2t)-12)V`
At `t=0, V_(ac)=8V` and at `t=oo, V_(ac)=-12V`
Therefore `V_(ac)` decreases exponentially from 8 to `-12V`.
`V_(ab)=V_a-V_b`
`V_a-i_1R_1+V_C=V_b`
`:. V_a-V_b=V_(ab)=i_1R_1-V_C`
Substituting the values , we have
`V_(ab)=(10e^(-2t))(2)=3e^(-2t)`
or `V_(ab)=17e^(-2t)V`
Thus `V_(ab)` decreses exponentially from `17 V` to `0`.

`V_(ab)` versus `t` graph is shown in figure.
`V_(cd)=V_C-V_d`
`V_d-i_2R_2-V_L=V_4`
`:. V_c-V_d=V_(cd)=i_2R_2+V_L`
Substituting the values we have
`V_(cd)=(4)(3)+16e^(-2t)`
`V_(cv)=(12+16e^(-2t))V`
At `t=0, V_(cd)=28` and at `t=oo, V_(cd)=12V`
i.e. `V_(cd)` decreases exponentially from `28 V` to `12 V`
`V_(cd)` versus t graph is shown in figure.
Promotional Banner

Topper's Solved these Questions

  • ELECTROMAGNETIC INDUCTION

    DC PANDEY ENGLISH|Exercise Example Type 3|4 Videos
  • ELECTROMAGNETIC INDUCTION

    DC PANDEY ENGLISH|Exercise Example Type 4|2 Videos
  • ELECTROMAGNETIC INDUCTION

    DC PANDEY ENGLISH|Exercise Medical entrances gallery|25 Videos
  • CURRENT ELECTRICITY

    DC PANDEY ENGLISH|Exercise Medical entrances gallery|97 Videos
  • ELECTROMAGNETIC WAVES

    DC PANDEY ENGLISH|Exercise Sec C|22 Videos

Similar Questions

Explore conceptually related problems

In the figure shown i=10e^(-4t) A. Find V_L and V_(ab)

In the figure shown i=10e^(-4t) A. Find V_L and V_(ab)

In the figure shown i=10e^(-4t) A. Find V_L and V_(ab)

In the figure shown V_(ab) at t=1 is

In Fig i_(1) = 10e^(-2t) A , i_(2) = 4 A , and V_(C) = 3e^(-2t) V . the vartiation of potential difference across A and C(V_(AC)) with time can be respresented as

In Fig i_(1) = 10e^(-2t) A , i_(2) = 4 A , and V_(C) = 3e^(-2t) V . The variation of potential difference across C and D(V_(CD)) with time can be expressed as

In the circuit shown in figure R_1=30Omega, R_2=40 Omega, L=0.4H and C=1/3mF . Find seven function of time I, I_1, I_2, V_(R_1), V_L, V_(R_2) and V_C . Also total power consumed in the circuit. In the given potential function V is in volts and omega rad//s V=200 sin(100t+30)

In the circuit shown in figure q varies with time t as q=(16t^(2)) . Here q is in coulomb and t in second. Find V_(ab)=(V_(a)-V_(b)) at t=3s

Given figure is the part of some circuit. Charge on the capacitor in the circuit is given by q=3(3-e^(-t)) , (coulomb) where t is time in seconds. Let V_(A) , V_(B) and V_(C) be the potentials of points A , B and C , respectively. At t=0 if V_(A)=5 V and a constant current i_(0)=1 Amp flows through R=1Omega , then find the V_(P) (in volt)

In the figure shown, the reading of voltmeters are V_1 = 40 V, V_2 = 40 V and V_3 = 1 0 V . Find (a) the peak value of current (b) the peak value of emf (c) the value of L and C .