Home
Class 12
PHYSICS
Two coils have a mutual inductance of 0....

Two coils have a mutual inductance of `0.005 H`. the current changes in the first coil according to equation `I=I_0 sinomegat`, where `I_0=10A` and `omega=100pirad//s`. The maximum value of emf (in volt) in the second coil is

A

`2pi`

B

`5pi`

C

`pi`

D

`4pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the electromotive force (emf) induced in the second coil due to the changing current in the first coil. We will use the formula for mutual inductance and the relationship between current and emf. ### Step-by-Step Solution: 1. **Understand the Given Information:** - Mutual inductance \( M = 0.005 \, H \) - Current in the first coil \( I(t) = I_0 \sin(\omega t) \) - Where \( I_0 = 10 \, A \) and \( \omega = 100 \pi \, \text{rad/s} \) 2. **Differentiate the Current:** - We need to find \( \frac{dI}{dt} \). - Given \( I(t) = I_0 \sin(\omega t) \), we differentiate it: \[ \frac{dI}{dt} = I_0 \cdot \omega \cos(\omega t) \] 3. **Substitute the Values:** - Substitute \( I_0 = 10 \, A \) and \( \omega = 100 \pi \, \text{rad/s} \): \[ \frac{dI}{dt} = 10 \cdot 100\pi \cdot \cos(\omega t) = 1000\pi \cos(\omega t) \] 4. **Find the Maximum Value of \( \frac{dI}{dt} \):** - The maximum value of \( \cos(\omega t) \) is 1. - Therefore, the maximum value of \( \frac{dI}{dt} \) is: \[ \left(\frac{dI}{dt}\right)_{\text{max}} = 1000\pi \] 5. **Calculate the Maximum Induced EMF:** - The induced emf \( \mathcal{E} \) in the second coil is given by: \[ \mathcal{E} = -M \frac{dI}{dt} \] - Taking the maximum value: \[ \mathcal{E}_{\text{max}} = M \left(\frac{dI}{dt}\right)_{\text{max}} = 0.005 \cdot 1000\pi \] 6. **Final Calculation:** - Calculate \( \mathcal{E}_{\text{max}} \): \[ \mathcal{E}_{\text{max}} = 5\pi \, \text{V} \] ### Conclusion: The maximum value of the induced emf in the second coil is \( 5\pi \, \text{V} \).

To solve the problem, we need to find the maximum value of the electromotive force (emf) induced in the second coil due to the changing current in the first coil. We will use the formula for mutual inductance and the relationship between current and emf. ### Step-by-Step Solution: 1. **Understand the Given Information:** - Mutual inductance \( M = 0.005 \, H \) - Current in the first coil \( I(t) = I_0 \sin(\omega t) \) - Where \( I_0 = 10 \, A \) and \( \omega = 100 \pi \, \text{rad/s} \) ...
Promotional Banner

Topper's Solved these Questions

  • ELECTROMAGNETIC INDUCTION

    DC PANDEY ENGLISH|Exercise Objective Questions|3 Videos
  • ELECTROMAGNETIC INDUCTION

    DC PANDEY ENGLISH|Exercise Level 1 Subjective|21 Videos
  • ELECTROMAGNETIC INDUCTION

    DC PANDEY ENGLISH|Exercise Level 1 Assertion And Reason|10 Videos
  • CURRENT ELECTRICITY

    DC PANDEY ENGLISH|Exercise Medical entrances gallery|97 Videos
  • ELECTROMAGNETIC WAVES

    DC PANDEY ENGLISH|Exercise Sec C|22 Videos

Similar Questions

Explore conceptually related problems

Two coils have a mutual inductance 0.005 H . The current changes in the first coil according to equation I=I_(0)sin omegat , where I_(0)=10A and omega=100pi radian//sec . The maximum value of e.m.f. in the second coil is

Two coils have a mutual inductance 0.005 H . The current changes in the first coil according to equation I=I_(0)sin omegat , where I_(0)=10A and omega=100pi radian/sec. The maximum value of e.m.f. in the second coil is

Two coils have a mutual inductance 0.005H. The current changes in the first coil according to the equation I=I_(0) sin omegat "where" I_(0)=10A and omega =100pi rad//s . The maximum value of emf wiin second coil is (pi//x) volts. Find the value of x.

Two coils have the mutual inductance of 0.05 H. The current changes in the first coil as I=I_(0)sin omegat , where I_(0)=1A and omega=100pi"rad/s" . The maximum emf induced in secondary coil is

Two coils have a mutual inductance 0.005 H. The alternating current changes in the first coil according to equation I = underset(o)(I) sin omega t, where underset(o)(I) = 10 A and omega = 100 pi rads^(-1) . The maximum value of emf in the second coil is (in volt)

Two coils have mutual inductance M = 3.25 xx 10^4H . The current i_1 in the ffrst coil increases at a uniform rate of 830 A //s . (a) What is the magnitude of the induced emf in the second coil? Is it constant? (b) Suppose that the current described is in the second coil rather than the first. What is the induced emf in the first coil?

A coil has a self inductance of 0.01H. The current through it is allowed to change at the rate of 1A in 10^(-2)s . Calculate the emf induced.

A pair of adjacent coils has a mutual inductance of 2.5 H. If the current in one coil changes from 0 of 40 A in 8.0 s, then the change in flux linked with the other coil is.

In Fig, the mutual inductance of a coil and a very long straight wire is M , coil has resistance R and self-inductance L . The current in the wire varies according to the law I = at , where a is a constant and t is the time, the time dependence of current in the coil is

A coil has a self-inductance of 0.05 henry. Find magnitude of the emf induced in it when the current flowing through it is changing at the rate 100 As^(-1)

DC PANDEY ENGLISH-ELECTROMAGNETIC INDUCTION-Level 1 Objective
  1. A current carrying ring is placed in a horizontal plane. A charged par...

    Text Solution

    |

  2. Identify the incorrect statement. Induced electric field

    Text Solution

    |

  3. Two coils have a mutual inductance of 0.005 H. the current changes in ...

    Text Solution

    |

  4. An inductance of 2H carries a current of 2A. To prevent sparking when ...

    Text Solution

    |

  5. A conducting rod is rotated about one end in a plane perpendicular to ...

    Text Solution

    |

  6. A magnet is taken towards a conducting ring in such a way that a const...

    Text Solution

    |

  7. A magnetic flux through a stationary loop with a resistance R varies d...

    Text Solution

    |

  8. The current i in an inductionn coil varies with time t according to th...

    Text Solution

    |

  9. The network shown in the figure is a part of complete circuit. What is...

    Text Solution

    |

  10. In an LC circuit the capacitor has maximum charge q0. The value of ((d...

    Text Solution

    |

  11. An alternating current I in an inductance coil varies with time t acco...

    Text Solution

    |

  12. A loop of area 1m^2 is placed in a magnetic field B=2T, such that plan...

    Text Solution

    |

  13. A rectangular loop of sides a and b is placed in xy-placed. A uniform ...

    Text Solution

    |

  14. The armature of a DC motor has 20Omega resistance. It draws a current ...

    Text Solution

    |

  15. In a transformer the output current and voltage are respectively 4 A a...

    Text Solution

    |

  16. When a loop moves towards a stationary magnet with speed v, the induce...

    Text Solution

    |

  17. A short magnet is allowed to fall from rest along the axis of a horizo...

    Text Solution

    |

  18. In figure, if the current i decreases at a rate alpha then VA-VB is

    Text Solution

    |

  19. A coil has an inductance of 50 m H and a resistance of 0.3Omega. If a ...

    Text Solution

    |

  20. A constant voltage is applied to a series R-L circuit by closing the s...

    Text Solution

    |