Home
Class 11
PHYSICS
The torque of a force F = - 6 hat (i) ac...

The torque of a force `F = - 6 hat (i)` acting at a point `r = 4 hat(j)` about origin will be

A

`-24 hat(k)`

B

`24 hat(k)`

C

`24 hat(j)`

D

`24 hat(i)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the torque \(\tau\) of a force \(\mathbf{F}\) acting at a point \(\mathbf{r}\) about the origin, we use the formula: \[ \mathbf{\tau} = \mathbf{r} \times \mathbf{F} \] ### Step 1: Identify the vectors Given: - Force vector \(\mathbf{F} = -6 \hat{i}\) - Position vector \(\mathbf{r} = 4 \hat{j}\) ### Step 2: Write the cross product We need to calculate the cross product \(\mathbf{r} \times \mathbf{F}\): \[ \mathbf{\tau} = \mathbf{r} \times \mathbf{F} = (4 \hat{j}) \times (-6 \hat{i}) \] ### Step 3: Apply the properties of cross product Using the property of cross products, we know that: \[ \hat{j} \times \hat{i} = -\hat{k} \] Thus, we can rewrite the expression: \[ \mathbf{\tau} = 4 \times (-6) \times (\hat{j} \times \hat{i}) = -24 (\hat{j} \times \hat{i}) = -24 (-\hat{k}) = 24 \hat{k} \] ### Step 4: Final result So, the torque \(\mathbf{\tau}\) is: \[ \mathbf{\tau} = 24 \hat{k} \] ### Conclusion The correct answer is \(24 \hat{k}\). ---

To find the torque \(\tau\) of a force \(\mathbf{F}\) acting at a point \(\mathbf{r}\) about the origin, we use the formula: \[ \mathbf{\tau} = \mathbf{r} \times \mathbf{F} \] ### Step 1: Identify the vectors Given: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ROTATION

    DC PANDEY ENGLISH|Exercise Check point 9.3|15 Videos
  • ROTATION

    DC PANDEY ENGLISH|Exercise (A) Chapter Exercises|83 Videos
  • ROTATION

    DC PANDEY ENGLISH|Exercise Check point 9.1|20 Videos
  • RAY OPTICS

    DC PANDEY ENGLISH|Exercise Integer type q.|14 Videos
  • ROTATIONAL MECHANICS

    DC PANDEY ENGLISH|Exercise Subjective Questions|2 Videos

Similar Questions

Explore conceptually related problems

The torque of a force F = -2 hat(i) +2 hat(j) +3 hat(k) acting on a point r = hat(i) - 2 hat(j)+hat(k) about origin will be

The torque of a force F = 2 hat(i) - 3 hat(j) +5 hat(k) acting at a point whose position vector r = 3 hat(i) - 3 hat(j) +5 hat(k) about the origin is

The torque of force F = -3 hat(i)+hat(j) + 5 hat(k) acting on a point r = 7 hat(i) + 3 hat(j) + hat(k) about origin will be

Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

Find the torque of a force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(R)=7hat(i)+3hat(j)+hat(k) .

The torque of force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(r)=7hat(i)+3hat(j)+hat(k) is ______________?

Find the torque of a force F=(2hat(i) +hat(j)-3hat(k))N about a point O. The position vector of point of application of force about O is r = (2 hat(i) + 3 hat(j) - hat(k))m .

What is the torque of a force overset(rarr)F=(2 hat i -3 hat j +4 hat k) Newton acting at a point overset(rarr)r=(3 hat I +2 hat j + 3 hat k) metre about the origin ?

Find the torque of the force vec(F)=(2hat(i)-3hat(j)+4hat(k)) N acting at the point vec(r )=(3hat(i)=2hat(j)+3hat(k)) m about the origion.

The moment of the force, vec F = 4 hati + 5 hat j - 6 hat k at (2, 0 , - 3) . About the point (2, - 2, -2) is given by