Home
Class 11
PHYSICS
The torque of force F = -3 hat(i)+hat(j)...

The torque of force `F = -3 hat(i)+hat(j) + 5 hat(k)` acting on a point `r = 7 hat(i) + 3 hat(j) + hat(k)` about origin will be

A

`14 hat(i)-38 hat(j) + 16 hat(k)`

B

`4 hat(i)+4hat(j)+6 hat(k)`

C

`-14 hat(i)+38 hat(j)-16 hat(k)`

D

`-21 hat(i)+3 hat(j)+5 hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the torque \(\tau\) of the force \(\mathbf{F} = -3 \hat{i} + \hat{j} + 5 \hat{k}\) acting on a point \(\mathbf{r} = 7 \hat{i} + 3 \hat{j} + \hat{k}\) about the origin, we can use the formula for torque: \[ \mathbf{\tau} = \mathbf{r} \times \mathbf{F} \] ### Step 1: Write down the vectors We have: - Position vector: \(\mathbf{r} = 7 \hat{i} + 3 \hat{j} + 1 \hat{k}\) - Force vector: \(\mathbf{F} = -3 \hat{i} + 1 \hat{j} + 5 \hat{k}\) ### Step 2: Set up the cross product The cross product can be calculated using the determinant of a matrix: \[ \mathbf{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 7 & 3 & 1 \\ -3 & 1 & 5 \end{vmatrix} \] ### Step 3: Calculate the determinant To find the determinant, we can expand it: \[ \mathbf{\tau} = \hat{i} \begin{vmatrix} 3 & 1 \\ 1 & 5 \end{vmatrix} - \hat{j} \begin{vmatrix} 7 & 1 \\ -3 & 5 \end{vmatrix} + \hat{k} \begin{vmatrix} 7 & 3 \\ -3 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} 3 & 1 \\ 1 & 5 \end{vmatrix} = (3 \cdot 5) - (1 \cdot 1) = 15 - 1 = 14 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 7 & 1 \\ -3 & 5 \end{vmatrix} = (7 \cdot 5) - (1 \cdot -3) = 35 + 3 = 38 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 7 & 3 \\ -3 & 1 \end{vmatrix} = (7 \cdot 1) - (3 \cdot -3) = 7 + 9 = 16 \] ### Step 4: Combine the results Now substituting back into the torque equation: \[ \mathbf{\tau} = 14 \hat{i} - 38 \hat{j} + 16 \hat{k} \] ### Final Result Thus, the torque \(\mathbf{\tau}\) is: \[ \mathbf{\tau} = 14 \hat{i} - 38 \hat{j} + 16 \hat{k} \] ### Conclusion The correct answer is option 1: \(14 \hat{i} - 38 \hat{j} + 16 \hat{k}\).

To find the torque \(\tau\) of the force \(\mathbf{F} = -3 \hat{i} + \hat{j} + 5 \hat{k}\) acting on a point \(\mathbf{r} = 7 \hat{i} + 3 \hat{j} + \hat{k}\) about the origin, we can use the formula for torque: \[ \mathbf{\tau} = \mathbf{r} \times \mathbf{F} \] ### Step 1: Write down the vectors We have: ...
Promotional Banner

Topper's Solved these Questions

  • ROTATION

    DC PANDEY ENGLISH|Exercise Check point 9.3|15 Videos
  • ROTATION

    DC PANDEY ENGLISH|Exercise (A) Chapter Exercises|83 Videos
  • ROTATION

    DC PANDEY ENGLISH|Exercise Check point 9.1|20 Videos
  • RAY OPTICS

    DC PANDEY ENGLISH|Exercise Integer type q.|14 Videos
  • ROTATIONAL MECHANICS

    DC PANDEY ENGLISH|Exercise Subjective Questions|2 Videos

Similar Questions

Explore conceptually related problems

The torque of a force F = -2 hat(i) +2 hat(j) +3 hat(k) acting on a point r = hat(i) - 2 hat(j)+hat(k) about origin will be

Find the torque of a force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(R)=7hat(i)+3hat(j)+hat(k) .

The torque of a force F = 2 hat(i) - 3 hat(j) +5 hat(k) acting at a point whose position vector r = 3 hat(i) - 3 hat(j) +5 hat(k) about the origin is

Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

The torque of a force F = - 6 hat (i) acting at a point r = 4 hat(j) about origin will be

The torque of force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(r)=7hat(i)+3hat(j)+hat(k) is ______________?

The moment of a force represented by F=hat(i)+2hat(j)+3hat(k) about the point 2hat(i)-hat(j)+hat(k) is equal to

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

What is the torque of a force overset(rarr)F=(2 hat i -3 hat j +4 hat k) Newton acting at a point overset(rarr)r=(3 hat I +2 hat j + 3 hat k) metre about the origin ?

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

DC PANDEY ENGLISH-ROTATION-Check point 9.2
  1. The torque of a force F = - 6 hat (i) acting at a point r = 4 hat(j) a...

    Text Solution

    |

  2. Moment of a force of magnitude 20 N acting along positive x-direction ...

    Text Solution

    |

  3. The torque of force F = -3 hat(i)+hat(j) + 5 hat(k) acting on a point ...

    Text Solution

    |

  4. The torque of a force F = -2 hat(i) +2 hat(j) +3 hat(k) acting on a po...

    Text Solution

    |

  5. A door 1.6 m wide requires a force of 1 N to be applied at the free en...

    Text Solution

    |

  6. A flywheel of moment of inertia 2 "kg-m"^(2) is rotated at a speed of ...

    Text Solution

    |

  7. A mass of 10 kg connected at the end of a rod of negligible mass is ro...

    Text Solution

    |

  8. A disc is rotating with angular velocity omega. A force F acts at a po...

    Text Solution

    |

  9. Angular momentum is

    Text Solution

    |

  10. The unit mass has r = 8 hat(i) - 4 hat(j) and v = 8 hat(i) + 4 hat(j) ...

    Text Solution

    |

  11. If the earth is a point mass of 6 xx 10^(24) kg revolving around the s...

    Text Solution

    |

  12. A particle with the position vector r has linear momentum p. Which of ...

    Text Solution

    |

  13. By keeping moment of inertia of a body constant, if we double the time...

    Text Solution

    |

  14. It torque is zero, then

    Text Solution

    |

  15. Total angular momentum of a rotating body is conserve, if the net torq...

    Text Solution

    |

  16. The angular momentum of a rotating body changes from A(0) to 4 A(0) in...

    Text Solution

    |

  17. If the radius of earth contracts 1/n of its present day value, the len...

    Text Solution

    |

  18. A thin circular ring of mass M and radius R is rotating about its axis...

    Text Solution

    |

  19. A disc of mass 2 kg and radius 0.2 m is rotating with angular velocity...

    Text Solution

    |

  20. Circular disc of mass 2 kg and radius 1 m is rotating about an axis pe...

    Text Solution

    |