Home
Class 11
PHYSICS
The torque of a force F = -2 hat(i) +2 h...

The torque of a force `F = -2 hat(i) +2 hat(j) +3 hat(k)` acting on a point `r = hat(i) - 2 hat(j)+hat(k)` about origin will be

A

`8 hat(i)+5 hat(j)+2 hat(k)`

B

`-8 hat(i)-5hat(j)-2 hat(k)`

C

`8 hat(i)-5 hat(j)+2 hat(k)`

D

`-8 hat(i)+5 hat(j)-2 hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the torque \( \tau \) of a force \( \mathbf{F} \) acting on a point \( \mathbf{r} \) about the origin, we use the formula: \[ \tau = \mathbf{r} \times \mathbf{F} \] where \( \times \) denotes the cross product. ### Step 1: Identify the vectors Given: - Force \( \mathbf{F} = -2 \hat{i} + 2 \hat{j} + 3 \hat{k} \) - Position vector \( \mathbf{r} = \hat{i} - 2 \hat{j} + \hat{k} \) ### Step 2: Set up the cross product We can express the cross product in determinant form: \[ \tau = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 1 \\ -2 & 2 & 3 \end{vmatrix} \] ### Step 3: Calculate the determinant To calculate the determinant, we expand it as follows: \[ \tau = \hat{i} \begin{vmatrix} -2 & 1 \\ 2 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ -2 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -2 \\ -2 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} -2 & 1 \\ 2 & 3 \end{vmatrix} = (-2)(3) - (1)(2) = -6 - 2 = -8 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 1 & 1 \\ -2 & 3 \end{vmatrix} = (1)(3) - (1)(-2) = 3 + 2 = 5 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 1 & -2 \\ -2 & 2 \end{vmatrix} = (1)(2) - (-2)(-2) = 2 - 4 = -2 \] ### Step 4: Combine the results Now substituting back into the expression for \( \tau \): \[ \tau = -8 \hat{i} - 5 \hat{j} - 2 \hat{k} \] ### Final Result Thus, the torque \( \tau \) is: \[ \tau = -8 \hat{i} - 5 \hat{j} - 2 \hat{k} \] ### Conclusion The correct answer is option 2: \( -8 \hat{i} - 5 \hat{j} - 2 \hat{k} \). ---

To find the torque \( \tau \) of a force \( \mathbf{F} \) acting on a point \( \mathbf{r} \) about the origin, we use the formula: \[ \tau = \mathbf{r} \times \mathbf{F} \] where \( \times \) denotes the cross product. ...
Promotional Banner

Topper's Solved these Questions

  • ROTATION

    DC PANDEY ENGLISH|Exercise Check point 9.3|15 Videos
  • ROTATION

    DC PANDEY ENGLISH|Exercise (A) Chapter Exercises|83 Videos
  • ROTATION

    DC PANDEY ENGLISH|Exercise Check point 9.1|20 Videos
  • RAY OPTICS

    DC PANDEY ENGLISH|Exercise Integer type q.|14 Videos
  • ROTATIONAL MECHANICS

    DC PANDEY ENGLISH|Exercise Subjective Questions|2 Videos

Similar Questions

Explore conceptually related problems

The torque of force F = -3 hat(i)+hat(j) + 5 hat(k) acting on a point r = 7 hat(i) + 3 hat(j) + hat(k) about origin will be

Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

The torque of a force F = 2 hat(i) - 3 hat(j) +5 hat(k) acting at a point whose position vector r = 3 hat(i) - 3 hat(j) +5 hat(k) about the origin is

Find the torque of a force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(R)=7hat(i)+3hat(j)+hat(k) .

The torque of a force F = - 6 hat (i) acting at a point r = 4 hat(j) about origin will be

Find the torque of the force vec(F)=(2hat(i)-3hat(j)+4hat(k)) N acting at the point vec(r )=(3hat(i)=2hat(j)+3hat(k)) m about the origion.

The torque of force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(r)=7hat(i)+3hat(j)+hat(k) is ______________?

The moment of a force represented by F=hat(i)+2hat(j)+3hat(k) about the point 2hat(i)-hat(j)+hat(k) is equal to

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

DC PANDEY ENGLISH-ROTATION-Check point 9.2
  1. The torque of a force F = - 6 hat (i) acting at a point r = 4 hat(j) a...

    Text Solution

    |

  2. Moment of a force of magnitude 20 N acting along positive x-direction ...

    Text Solution

    |

  3. The torque of force F = -3 hat(i)+hat(j) + 5 hat(k) acting on a point ...

    Text Solution

    |

  4. The torque of a force F = -2 hat(i) +2 hat(j) +3 hat(k) acting on a po...

    Text Solution

    |

  5. A door 1.6 m wide requires a force of 1 N to be applied at the free en...

    Text Solution

    |

  6. A flywheel of moment of inertia 2 "kg-m"^(2) is rotated at a speed of ...

    Text Solution

    |

  7. A mass of 10 kg connected at the end of a rod of negligible mass is ro...

    Text Solution

    |

  8. A disc is rotating with angular velocity omega. A force F acts at a po...

    Text Solution

    |

  9. Angular momentum is

    Text Solution

    |

  10. The unit mass has r = 8 hat(i) - 4 hat(j) and v = 8 hat(i) + 4 hat(j) ...

    Text Solution

    |

  11. If the earth is a point mass of 6 xx 10^(24) kg revolving around the s...

    Text Solution

    |

  12. A particle with the position vector r has linear momentum p. Which of ...

    Text Solution

    |

  13. By keeping moment of inertia of a body constant, if we double the time...

    Text Solution

    |

  14. It torque is zero, then

    Text Solution

    |

  15. Total angular momentum of a rotating body is conserve, if the net torq...

    Text Solution

    |

  16. The angular momentum of a rotating body changes from A(0) to 4 A(0) in...

    Text Solution

    |

  17. If the radius of earth contracts 1/n of its present day value, the len...

    Text Solution

    |

  18. A thin circular ring of mass M and radius R is rotating about its axis...

    Text Solution

    |

  19. A disc of mass 2 kg and radius 0.2 m is rotating with angular velocity...

    Text Solution

    |

  20. Circular disc of mass 2 kg and radius 1 m is rotating about an axis pe...

    Text Solution

    |