Home
Class 11
PHYSICS
The rotational kinetic energy of a body ...

The rotational kinetic energy of a body is E and its moment of inertia is `I`. The angular momentum is

A

`EI`

B

`2 sqrt((EI))`

C

`sqrt((2EI))`

D

`(E)/(I)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angular momentum \( L \) of a body given its rotational kinetic energy \( E \) and moment of inertia \( I \), we can follow these steps: ### Step 1: Write the formula for rotational kinetic energy The rotational kinetic energy \( E \) of a body is given by the formula: \[ E = \frac{1}{2} I \omega^2 \] where \( \omega \) is the angular velocity. ### Step 2: Rearrange the equation to solve for \( \omega \) From the equation above, we can solve for \( \omega \): \[ \omega^2 = \frac{2E}{I} \] Taking the square root of both sides, we get: \[ \omega = \sqrt{\frac{2E}{I}} \] ### Step 3: Write the formula for angular momentum The angular momentum \( L \) is defined as: \[ L = I \omega \] ### Step 4: Substitute \( \omega \) into the angular momentum equation Now we substitute the expression for \( \omega \) from Step 2 into the angular momentum equation: \[ L = I \left( \sqrt{\frac{2E}{I}} \right) \] ### Step 5: Simplify the expression Now we simplify the expression for \( L \): \[ L = I \cdot \sqrt{\frac{2E}{I}} = \sqrt{2E \cdot I} \] ### Conclusion Thus, the angular momentum \( L \) in terms of \( E \) and \( I \) is: \[ L = \sqrt{2EI} \] ### Final Answer The angular momentum is \( \sqrt{2EI} \). ---

To find the angular momentum \( L \) of a body given its rotational kinetic energy \( E \) and moment of inertia \( I \), we can follow these steps: ### Step 1: Write the formula for rotational kinetic energy The rotational kinetic energy \( E \) of a body is given by the formula: \[ E = \frac{1}{2} I \omega^2 \] where \( \omega \) is the angular velocity. ...
Promotional Banner

Topper's Solved these Questions

  • ROTATION

    DC PANDEY ENGLISH|Exercise (B) Chapter Exercises|25 Videos
  • ROTATION

    DC PANDEY ENGLISH|Exercise (C) Chapter Exercises|39 Videos
  • ROTATION

    DC PANDEY ENGLISH|Exercise Check point 9.3|15 Videos
  • RAY OPTICS

    DC PANDEY ENGLISH|Exercise Integer type q.|14 Videos
  • ROTATIONAL MECHANICS

    DC PANDEY ENGLISH|Exercise Subjective Questions|2 Videos

Similar Questions

Explore conceptually related problems

The rotational kinetic energy of a disc is 450 J and its moment of inertia is 100 kg m^2 . What is its angular momentum ?

The rotational kinetic energy of two bodies of moment of inertia 9 kg m^(2) and 1kg m^(2) are same . The ratio of their angular momenta is

The kinetic energy K of a rotating body depends on its moment of inertia I and its angular speed omega . Assuming the relation to be K=kI^(alpha) omega^b where k is a dimensionless constatnt, find a and b. Moment of inertia of a spere about its diameter is 2/5Mr^2 .

A body is in pure rolling over a horizontal surface. If the rotational kinetic energy of that body is 40% of its total kinetic energy, then the body is

The rotational kinetic energy of a body is E. In the absence of external torque, the mass of the body is halved and its radius of gyration is doubled. Its rotational kinetic energy is

When the kinetic energy of a body is increased by there its momentum is increased by:

The rotational kinetic energy of a body is given by E=1/2I omega^(2) . Use this equation to get the dimensional formula of I?

Angular momentum L and rotational kinetic energy K_R of a body are related to each other by the relation. (I = moment of inertia)

If the rotational kinetic energy of a body is increased by 300 %, then determine percentage increase in its angular momentum.

Only rotating bodies can have angular momentum.

DC PANDEY ENGLISH-ROTATION-(A) Chapter Exercises
  1. A diver is able to cut through water in a swimming pool. Which propert...

    Text Solution

    |

  2. A body is in pure rotation. The linear speed 'v' of a particle, the di...

    Text Solution

    |

  3. The rotational kinetic energy of a body is E and its moment of inertia...

    Text Solution

    |

  4. A body is under the action of two equal and oppositely directed forces...

    Text Solution

    |

  5. A particle performing uniform circular motion has angular momentum L. ...

    Text Solution

    |

  6. Moment of a force of magnitude 10 N acting along positive y-direction ...

    Text Solution

    |

  7. The radius of gyration of a uniform rod of length L about an axis pass...

    Text Solution

    |

  8. Five particles of mass 2 kg are attached to the rim of a circular disc...

    Text Solution

    |

  9. A particle is moving in a circular orbit with constant speed. Select w...

    Text Solution

    |

  10. If the equation for the displacement of a particle moving on a circle ...

    Text Solution

    |

  11. A wheel is a rest. Its angular velocity increases uniformly and become...

    Text Solution

    |

  12. A rigid body rotates about a fixed axis with variable angular velocity...

    Text Solution

    |

  13. A wheel is rotating at the rate of 33 "rev min"^(-1). If it comes to s...

    Text Solution

    |

  14. A wheel is rotating at 900 rpm about its axis. When power is cut off i...

    Text Solution

    |

  15. A wheel is subjected to uniform angular acceleration about its axis. I...

    Text Solution

    |

  16. The motor of an engine is rotating about its axis with an angular velo...

    Text Solution

    |

  17. Let vecF be a force acting on a particle having positon vector vecr. L...

    Text Solution

    |

  18. A particle of mass 5 g is moving with a uniform speed of 3 sqrt(2) "cm...

    Text Solution

    |

  19. A particle of mass m is moving in yz-plane with a unifrom velocity v w...

    Text Solution

    |

  20. A particle of mass m=5 units is moving with a uniform speed v = 3 sqrt...

    Text Solution

    |