Home
Class 11
PHYSICS
A particle of mass 2 kg located at the p...

A particle of mass `2 kg` located at the position `(hat i+ hat k) m` has a velocity `2(+ hat i- hat j + hat k) m//s`. Its angular momentum about `z-`axis in `kg-m^(2)//s` is :

A

`+4`

B

`+8`

C

`-4`

D

`-8`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angular momentum of a particle about the z-axis, we can follow these steps: ### Step 1: Identify the given parameters - Mass of the particle, \( m = 2 \, \text{kg} \) - Position vector, \( \mathbf{r} = \hat{i} + \hat{k} \, \text{m} \) - Velocity vector, \( \mathbf{v} = 2(\hat{i} - \hat{j} + \hat{k}) \, \text{m/s} = 2\hat{i} - 2\hat{j} + 2\hat{k} \) ### Step 2: Write the angular momentum formula The angular momentum \( \mathbf{L} \) about the origin is given by: \[ \mathbf{L} = \mathbf{r} \times (m \mathbf{v}) \] ### Step 3: Calculate \( m \mathbf{v} \) First, we calculate \( m \mathbf{v} \): \[ m \mathbf{v} = 2(2\hat{i} - 2\hat{j} + 2\hat{k}) = 4\hat{i} - 4\hat{j} + 4\hat{k} \] ### Step 4: Set up the cross product Now we need to calculate the cross product \( \mathbf{r} \times (m \mathbf{v}) \): \[ \mathbf{L} = (\hat{i} + \hat{k}) \times (4\hat{i} - 4\hat{j} + 4\hat{k}) \] ### Step 5: Write the vectors in matrix form We can express the cross product using the determinant of a matrix: \[ \mathbf{L} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 1 \\ 4 & -4 & 4 \end{vmatrix} \] ### Step 6: Calculate the determinant Calculating the determinant: \[ \mathbf{L} = \hat{i} \begin{vmatrix} 0 & 1 \\ -4 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 4 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 0 \\ 4 & -4 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 0 & 1 \\ -4 & 4 \end{vmatrix} = (0)(4) - (1)(-4) = 4 \) 2. \( \begin{vmatrix} 1 & 1 \\ 4 & 4 \end{vmatrix} = (1)(4) - (1)(4) = 0 \) 3. \( \begin{vmatrix} 1 & 0 \\ 4 & -4 \end{vmatrix} = (1)(-4) - (0)(4) = -4 \) Putting it all together: \[ \mathbf{L} = 4\hat{i} - 0\hat{j} - 4\hat{k} = 4\hat{i} - 4\hat{k} \] ### Step 7: Find the z-component of angular momentum The z-component of angular momentum \( L_z \) is the coefficient of \( \hat{k} \): \[ L_z = -4 \, \text{kg m}^2/\text{s} \] ### Final Answer Thus, the angular momentum about the z-axis is: \[ \boxed{-4} \, \text{kg m}^2/\text{s} \] ---

To find the angular momentum of a particle about the z-axis, we can follow these steps: ### Step 1: Identify the given parameters - Mass of the particle, \( m = 2 \, \text{kg} \) - Position vector, \( \mathbf{r} = \hat{i} + \hat{k} \, \text{m} \) - Velocity vector, \( \mathbf{v} = 2(\hat{i} - \hat{j} + \hat{k}) \, \text{m/s} = 2\hat{i} - 2\hat{j} + 2\hat{k} \) ### Step 2: Write the angular momentum formula ...
Promotional Banner

Topper's Solved these Questions

  • ROTATION

    DC PANDEY ENGLISH|Exercise (B) Chapter Exercises|25 Videos
  • ROTATION

    DC PANDEY ENGLISH|Exercise (C) Chapter Exercises|39 Videos
  • ROTATION

    DC PANDEY ENGLISH|Exercise Check point 9.3|15 Videos
  • RAY OPTICS

    DC PANDEY ENGLISH|Exercise Integer type q.|14 Videos
  • ROTATIONAL MECHANICS

    DC PANDEY ENGLISH|Exercise Subjective Questions|2 Videos

Similar Questions

Explore conceptually related problems

The unit mass has r = 8 hat(i) - 4 hat(j) and v = 8 hat(i) + 4 hat(j) . Its angular momentum is

Find the projection of the veca = 2 hat i+3 hat j+2 hat k on the vecb = hat i+2 hat j+ hat k .

vecF = a hat i + 3hat j+ 6 hat k and vec r = 2hat i-6hat j -12 hat k . The value of a for which the angular momentum is conserved is

Evaluate the following: [ hat i\ hat j\ hat k]+[ hat j\ hat k\ hat i]+[ hat k\ hat i\ hat j] .

If the vectors 3 hat i+m hat j+ hat k\ a n d\ 2 hat i- hat j-8 hat k are orthogonal, find mdot

Show that the points A(-2 hat i+3 hat j+5 hat k), B( hat i+2 hat j+3 hat k) and C(7 hat i- hat k) are collinear.

A uniform force of (3 hat(i)+hat(j)) newton acts on a particle of mass 2 kg . Hence the particle is displaced from position (2 hat(i)+hat(k)) meter to position (4 hat(i)+ 3hat(j)-hat(k)) meter. The work done by the force on the particle is :

Find the values of x, y and z so that the vectors vec a=x hat i+2 hat j+z hat k and vec b=2 hat i+y hat j+ hat k are equal.

find the value of x,y and z so that the vectors vec a= x hat i+ 2 hat j+z hat k and vec b = 2 hat i +y hat j +hat k are equal

Two bodies of mass 1 kg and 3 kg have position vectors hat i+ 2 hat j + hat k and - 3 hat i- 2 hat j+ hat k , respectively. The centre of mass of this system has a position vector.

DC PANDEY ENGLISH-ROTATION-(A) Chapter Exercises
  1. A particle of mass m is moving in yz-plane with a unifrom velocity v w...

    Text Solution

    |

  2. A particle of mass m=5 units is moving with a uniform speed v = 3 sqrt...

    Text Solution

    |

  3. A particle of mass 2 kg located at the position (hat i+ hat k) m has a...

    Text Solution

    |

  4. A particle of mass m is projected with velocity v moving at an angle o...

    Text Solution

    |

  5. A sphere of mass M rolls without slipping on rough surface with centre...

    Text Solution

    |

  6. A constant torque of 1000 N-m turns a wheel of moment of inertia 200 k...

    Text Solution

    |

  7. A Merry -go-round, made of a ring-like plarfrom of radius R and mass M...

    Text Solution

    |

  8. A flywheel having a radius of gyration of 2m and mass 10 kg rotates at...

    Text Solution

    |

  9. A flywheel is in the form of a uniform circular disc of radius 1 m and...

    Text Solution

    |

  10. A rod is placed along the line,y=2x with its centre at origin. The mom...

    Text Solution

    |

  11. The ratio of the radii of gyration of a circular disc and a circular r...

    Text Solution

    |

  12. Let I(A) and I(B) be moments of inertia of a body about two axes A and...

    Text Solution

    |

  13. The ratio of the radii of gyration of a hollow sphere and a solid sphe...

    Text Solution

    |

  14. A square lamina is as shown in figure. The moment of inertia of the fr...

    Text Solution

    |

  15. The ratio of the radii of gyration of a circular disc about a tangenti...

    Text Solution

    |

  16. A thin uniform circular disc of mass M and radius R is rotating in a h...

    Text Solution

    |

  17. A ring is rolling on an inclined plane. The ratio of the linear and ro...

    Text Solution

    |

  18. A wheel of bicycle is rolling without slipping on a level road. The ve...

    Text Solution

    |

  19. A disc is rolling without slipping on a horizontal surface with C, as ...

    Text Solution

    |

  20. A rigid body rotates with an angular momentum L. If its rotational kin...

    Text Solution

    |