Home
Class 11
PHYSICS
2kg of ice at -20^@C is mixed with 5kg o...

2kg of ice at `-20^@C` is mixed with 5kg of water at `20^@C` in an insulating vessel having a negligible heat capacity. Calculate the final mass of water remaining in the container. It is given that the specific heats of water & ice are `1kcal//kg//^@C` and `0.5`
`kcal//kg//^@C` while the latent heat of fusion of ice is `80kcal//kg`

A

7 kg

B

6 kg

C

4 kg

D

2 kg

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of mixing 2 kg of ice at -20°C with 5 kg of water at 20°C in an insulating vessel, we will follow these steps: ### Step 1: Calculate the heat required to raise the temperature of ice from -20°C to 0°C. The specific heat of ice is given as \(0.5 \, \text{kcal/kg°C}\). \[ Q_1 = m \cdot c \cdot \Delta T \] Where: - \(m = 2 \, \text{kg}\) (mass of ice) - \(c = 0.5 \, \text{kcal/kg°C}\) (specific heat of ice) - \(\Delta T = 0 - (-20) = 20°C\) (change in temperature) Calculating \(Q_1\): \[ Q_1 = 2 \, \text{kg} \cdot 0.5 \, \text{kcal/kg°C} \cdot 20°C = 20 \, \text{kcal} \] ### Step 2: Calculate the heat released by the water as it cools from 20°C to 0°C. The specific heat of water is given as \(1 \, \text{kcal/kg°C}\). \[ Q_2 = m \cdot c \cdot \Delta T \] Where: - \(m = 5 \, \text{kg}\) (mass of water) - \(c = 1 \, \text{kcal/kg°C}\) (specific heat of water) - \(\Delta T = 20 - 0 = 20°C\) (change in temperature) Calculating \(Q_2\): \[ Q_2 = 5 \, \text{kg} \cdot 1 \, \text{kcal/kg°C} \cdot 20°C = 100 \, \text{kcal} \] ### Step 3: Calculate the heat required to convert the ice at 0°C to water at 0°C. The latent heat of fusion of ice is given as \(80 \, \text{kcal/kg}\). \[ Q_3 = m \cdot L_f \] Where: - \(m = 2 \, \text{kg}\) (mass of ice) - \(L_f = 80 \, \text{kcal/kg}\) (latent heat of fusion) Calculating \(Q_3\): \[ Q_3 = 2 \, \text{kg} \cdot 80 \, \text{kcal/kg} = 160 \, \text{kcal} \] ### Step 4: Determine the heat balance. The heat gained by the ice to reach 0°C and then to convert to water must equal the heat lost by the water cooling down to 0°C. 1. Heat gained by ice to reach 0°C: \(Q_1 = 20 \, \text{kcal}\) 2. Heat lost by water cooling to 0°C: \(Q_2 = 100 \, \text{kcal}\) Since the total heat required to convert all the ice to water is \(Q_1 + Q_3 = 20 \, \text{kcal} + 160 \, \text{kcal} = 180 \, \text{kcal}\), and the heat available from the water is only \(100 \, \text{kcal}\), not all the ice can melt. ### Step 5: Calculate how much ice can melt with the available heat. The heat available after raising the ice to 0°C is: \[ Q_{\text{available}} = Q_2 - Q_1 = 100 \, \text{kcal} - 20 \, \text{kcal} = 80 \, \text{kcal} \] This heat will be used to melt some of the ice: \[ Q_{\text{melt}} = m \cdot L_f \implies 80 \, \text{kcal} = m \cdot 80 \, \text{kcal/kg} \] Solving for \(m\): \[ m = \frac{80 \, \text{kcal}}{80 \, \text{kcal/kg}} = 1 \, \text{kg} \] ### Step 6: Calculate the final mass of water. The final mass of water in the container is the sum of the original mass of water and the mass of ice that melted: \[ \text{Final mass of water} = 5 \, \text{kg} + 1 \, \text{kg} = 6 \, \text{kg} \] ### Final Answer: The final mass of water remaining in the container is **6 kg**. ---

To solve the problem of mixing 2 kg of ice at -20°C with 5 kg of water at 20°C in an insulating vessel, we will follow these steps: ### Step 1: Calculate the heat required to raise the temperature of ice from -20°C to 0°C. The specific heat of ice is given as \(0.5 \, \text{kcal/kg°C}\). \[ Q_1 = m \cdot c \cdot \Delta T ...
Promotional Banner

Topper's Solved these Questions

  • CALORIMETRY AND HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Assertion and reason|17 Videos
  • CALORIMETRY AND HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Match the columns|4 Videos
  • CALORIMETRY AND HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Check points 16.4|29 Videos
  • CALORIMETRY & HEAT TRANSFER

    DC PANDEY ENGLISH|Exercise Level 2 Subjective|14 Videos
  • CENTRE OF MASS

    DC PANDEY ENGLISH|Exercise Medical entrances gallery|27 Videos

Similar Questions

Explore conceptually related problems

One kg of ice at 0^(@)C is mixed with 1 kg of water at 10^(@)C . The resulting temperature will be

1 kg of ice at 0^(@)C is mixed with 1.5 kg of water at 45^(@)C [latent heat of fusion = 80 cal//gl. Then

2 kg of ice at -15^@C is mixed with 2.5 kg of water at 25^@C in an insulating container. If the specific heat capacities of ice and water are 0.5 cal//g^@C and 1 cal//g^@C , find the amount of water present in the container? (in kg nearest integer)

200 g of ice at –20°C is mixed with 500 g of water 20°C in an insulating vessel. Final mass of water in vessel is (specific heat of ice – 0.5 cal g^(–1°)C^(–1) )

1kg ice at -10^(@)C is mixed with 1kg water at 100^(@)C . Then final equilirium temperature and mixture content.

1kg ice at -10^(@) is mixed with 1kg water at 50^(@)C . The final equilibrium temperature and mixture content.

1 kg ice at -20^(@)C is mixed with 1 kg steam at 200^(@)C . The equilibrium temperature and mixture content is

1 kg ice at -20^(@)C is mixed with 1 kg steam at 200^(@)C . The equilibrium temperature and mixture content is

120 g of ice at 0^(@)C is mixed with 100 g of water at 80^(@)C . Latent heat of fusion is 80 cal/g and specific heat of water is 1 cal/ g-.^(@)C . The final temperature of the mixture is

50g of ice at 0^(@)C is mixed with 200g of water at 0^(@)C.6 kcal heat is given to system [Ice +water]. Find the temperature (in .^(@)C ) of the system.

DC PANDEY ENGLISH-CALORIMETRY AND HEAT TRANSFER-Taking it together
  1. 19 g of water at 30^@C and 5 g of ice at -20^@C are mixed together in ...

    Text Solution

    |

  2. Work done in converting 1 g of ice at -10^@C into steam at 100^@C is

    Text Solution

    |

  3. Two rigid boxes containing different ideal gases are placed on a table...

    Text Solution

    |

  4. The figure given below shows the cooling curve of pure wax material af...

    Text Solution

    |

  5. Three conducting rods of same material and cross-section are shown in ...

    Text Solution

    |

  6. Two rods with the same dimensions have thermal conductivities in the r...

    Text Solution

    |

  7. Two identical conducting rods are first connected independently to two...

    Text Solution

    |

  8. Three rods of identical area of cross-section and made from the same m...

    Text Solution

    |

  9. Two identical rods are made of different materials whose thermal condu...

    Text Solution

    |

  10. The temperature change versus heat supplied curve is given for 1 kg of...

    Text Solution

    |

  11. 2kg of ice at -20^@C is mixed with 5kg of water at 20^@C in an insulat...

    Text Solution

    |

  12. 10 gm of ice cubes at 0^(@)"C" are released in a tumbler (water equi...

    Text Solution

    |

  13. A cylindrical metallic rod in thermal contact with two reservation of ...

    Text Solution

    |

  14. if 1 g of steam is mixed with 1 g of ice, then the resultant temperatu...

    Text Solution

    |

  15. The rate of flow of heat through 12 identical conductors made of same ...

    Text Solution

    |

  16. Equal masses of three liquids A, B and C have temperature 10^(@)C, 25^...

    Text Solution

    |

  17. In an industrial process 10 kg of water per hour is to be heated from ...

    Text Solution

    |

  18. Two identical conducting rods AB and CD are connected to a circular c...

    Text Solution

    |

  19. A ring consisting of two parts ADB and ACB of same conductivity k carr...

    Text Solution

    |

  20. Water is being boiled in a flat bottomed kettle placed on a stove The ...

    Text Solution

    |