Home
Class 12
MATHS
Three vectors veca,vecbandvecc satisfy t...

Three vectors `veca,vecbandvecc` satisfy the condition `veca+vecb+vecc=vec0` . Evaluate the quantity `mu=veca*vecb+vecb*vecc+vecc*veca`, if `|veca|=3,|vecb|=4and|vecc|=2`.

Text Solution

Verified by Experts

The correct Answer is:
`-(21)/2`
Promotional Banner

Topper's Solved these Questions

  • II PUC MATHEMATICS ANNUAL EXAM QUESTION PEPER MARCH -17

    SUNSTAR PUBLICATION|Exercise PART -D|12 Videos
  • II PUC MATHEMATICS ANNUAL EXAM QUESTION PEPER MARCH -17

    SUNSTAR PUBLICATION|Exercise PART -B|14 Videos
  • II PUC MATHEMATICS ANNUAL EXAM QUESTION PAPER MARCH -2018

    SUNSTAR PUBLICATION|Exercise PART-E|4 Videos
  • II PUC MATHEMATICS P.U. BOARD LATEST MODEL QUESTION PAPER - 1

    SUNSTAR PUBLICATION|Exercise PART - E|2 Videos

Similar Questions

Explore conceptually related problems

Prove that [veca+vecb, vecb+vecc, vecc+veca]=2[veca,vecb,vecc]

Prove that [veca+vecb vecb+vecc vecc+veca]= 2[veca vecb vecc]

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then angle between veca and vecb is

The non-zero vectors veca, vecb and vecc are related by veca = 8 vecb and vecc=-7 vecb. Then the angle between veca and vecc is :

Three vectors satisfyi the relation vecA*vecB=0 and vecA*vecC=0 then vecA is parallel to

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product : [2veca-vecb, vec2b-vecc,vec2c-veca]=