Home
Class 11
MATHS
Lt(x to0)(log(1+3x))/(sin 4x) is equal t...

`Lt_(x to0)(log(1+3x))/(sin 4x)` is equal to

A

`(4)/(3)`

B

`-(4)/(3)`

C

`(3)/(4)`

D

`-(3)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\log(1 + 3x)}{\sin(4x)} \), we will follow these steps: ### Step 1: Rewrite the Limit We start with the limit: \[ L = \lim_{x \to 0} \frac{\log(1 + 3x)}{\sin(4x)} \] ### Step 2: Use the Properties of Logarithms We can use the property of logarithms that states: \[ \lim_{x \to 0} \frac{\log(1 + u)}{u} = 1 \quad \text{as } u \to 0 \] In our case, let \( u = 3x \). Then as \( x \to 0 \), \( u \to 0 \). ### Step 3: Rewrite the Limit We can rewrite the limit as: \[ L = \lim_{x \to 0} \frac{\log(1 + 3x)}{3x} \cdot \frac{3x}{\sin(4x)} \] ### Step 4: Separate the Limits Now we can separate the limit into two parts: \[ L = \lim_{x \to 0} \frac{\log(1 + 3x)}{3x} \cdot \lim_{x \to 0} \frac{3x}{\sin(4x)} \] ### Step 5: Evaluate the First Limit Using the property of logarithms: \[ \lim_{x \to 0} \frac{\log(1 + 3x)}{3x} = 1 \] ### Step 6: Evaluate the Second Limit For the second limit, we can use the property: \[ \lim_{x \to 0} \frac{\sin(kx)}{kx} = 1 \quad \text{for any constant } k \] Thus, \[ \lim_{x \to 0} \frac{3x}{\sin(4x)} = \lim_{x \to 0} \frac{3}{4} \cdot \frac{4x}{\sin(4x)} = \frac{3}{4} \cdot 1 = \frac{3}{4} \] ### Step 7: Combine the Results Now, we can combine the results from the two limits: \[ L = 1 \cdot \frac{3}{4} = \frac{3}{4} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\log(1 + 3x)}{\sin(4x)} = \frac{3}{4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

Lt_(x rarr 0) (tan3x)/(sin 2x) is equal to

Lt_(x to0)(tan3x-2x)/(3x-sin^(2)x) is equal to

Lt_(xto0)(x)/(sin3x) is equal to (i) 3 (ii) 1/3 (iii) 0 (iv) 1

Lt_(x to 0)(a^(x)-1)/(sqrt(1+x)-1) is equal to

Lt_(xrarr 0) (sin^(-1)x)/(x) is equal to

Lt_(xto0)((1-cos2x)sin5x)/(x^(2)sin3x) is equal to (i) (6)/(5) (ii) 5/6 (iii) 10/3 (iv) 3/10

lim_(x to 0) (log (1 + 2x))/(x) + lim_(x to 0) (x^(4) - 2^(4))/(x - 2) equals

Lt_(x rarr0) (3^(2x)-1)/(x) is equal to

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

Lt_(x rarr oo) x sin (3/x) is equal to

ICSE-LIMITS AND DERIVATIVES -Multiple Choice Questions
  1. Lt(x to0)(log(1+3x))/(sin 4x) is equal to

    Text Solution

    |

  2. Lt(xto0)(sqrt(1+x)-1)/(x) is equal to (i) 0 (ii) 1 (iii) 1/2 ...

    Text Solution

    |

  3. Lt(xto0)(x)/(sin3x) is equal to (i) 3 (ii) 1/3 (iii) 0 (iv) 1

    Text Solution

    |

  4. Lt(xto0)(sqrt(4+x)-2)/(sinx) is equal to (i) 4 (ii) 1 (iii) 1/4...

    Text Solution

    |

  5. If Lt(x to a)(x^(9)-a^(9))/(x-a)=Lt(xto5)(x+4) then all possible value...

    Text Solution

    |

  6. Let f(x)={:{(x+2",",xle-1),(cx^(2)",",xgt-1):} If Lt(xto-1) f(x) exist...

    Text Solution

    |

  7. lim{x\rightarrow 0}(1-cos2x)/(sin^(2)2x) is equal to

    Text Solution

    |

  8. Lt(x to0)(tan3x-2x)/(3x-sin^(2)x) is equal to

    Text Solution

    |

  9. lim{x\rightarrow 0}(1-cosmx)/(1-cos nx) is equal to

    Text Solution

    |

  10. lim{x\rightarrow 0}(cosx-cos3x)/(x(sin 3x-sinx)) is equal to

    Text Solution

    |

  11. Lt(xto0)((1-cos2x)sin5x)/(x^(2)sin3x) is equal to (i) (6)/(5) (ii...

    Text Solution

    |

  12. If Lim(x to 0) k . cosec x=Lim(x to 0)x cosec kx, then k is (i) -1,1...

    Text Solution

    |

  13. Lt(x to pi)(sinx)/(x-pi) is equal to

    Text Solution

    |

  14. Lt(xto1)(sinpix)/(x-1) is equal to

    Text Solution

    |

  15. Lt(x to (pi)/(2))(2x-pi)/(cos x) is equal to

    Text Solution

    |

  16. Lt(x to (pi)/(2))(pi/2-x)tan x is equal to (i) 1 (ii) -1 (iii) (pi)...

    Text Solution

    |

  17. (lim)(x->pi/2)(tan2x)/(x-pi/2)

    Text Solution

    |

  18. Lt(x to 0)(e^(x)+sinx-1)/(3x) is equal to (i) 1/3 (ii) -1/3 (iii) 2/3...

    Text Solution

    |

  19. lim(x to 2)(log(x-1))/(x-2) is equal to

    Text Solution

    |

  20. lim(x to 0)(3^(2x)-2^(3x))/(x) is equal to

    Text Solution

    |

  21. Lt(x to 0)(|x|)/(x) is equal to (i) 1 (ii) -1 (iii) 0 (iv) does not e...

    Text Solution

    |