Home
Class 11
MATHS
If y=(sinx+cosx)/(sinx-cosx), then (dy)/...

If `y=(sinx+cosx)/(sinx-cosx)`, then `(dy)/(dx)" at "x=0` is

A

`-2`

B

0

C

`1/2`

D

`2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = 0\) for the function \(y = \frac{\sin x + \cos x}{\sin x - \cos x}\), we will follow these steps: ### Step 1: Rewrite the function We start with: \[ y = \frac{\sin x + \cos x}{\sin x - \cos x} \] To simplify the differentiation, we can divide the numerator and the denominator by \(\cos x\): \[ y = \frac{\frac{\sin x}{\cos x} + 1}{\frac{\sin x}{\cos x} - 1} = \frac{\tan x + 1}{\tan x - 1} \] ### Step 2: Differentiate using the quotient rule Now we differentiate \(y\) using the quotient rule, which states that if \(y = \frac{u}{v}\), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, let \(u = \tan x + 1\) and \(v = \tan x - 1\). Calculating the derivatives: - \(\frac{du}{dx} = \sec^2 x\) - \(\frac{dv}{dx} = \sec^2 x\) Thus, applying the quotient rule: \[ \frac{dy}{dx} = \frac{(\tan x - 1)(\sec^2 x) - (\tan x + 1)(\sec^2 x)}{(\tan x - 1)^2} \] ### Step 3: Simplify the expression Now, we simplify the numerator: \[ \frac{dy}{dx} = \frac{(\tan x - 1)\sec^2 x - (\tan x + 1)\sec^2 x}{(\tan x - 1)^2} \] \[ = \frac{\sec^2 x \left((\tan x - 1) - (\tan x + 1)\right)}{(\tan x - 1)^2} \] \[ = \frac{\sec^2 x \left(\tan x - 1 - \tan x - 1\right)}{(\tan x - 1)^2} \] \[ = \frac{\sec^2 x (-2)}{(\tan x - 1)^2} \] \[ = \frac{-2\sec^2 x}{(\tan x - 1)^2} \] ### Step 4: Evaluate at \(x = 0\) Now we need to evaluate \(\frac{dy}{dx}\) at \(x = 0\): - \(\tan(0) = 0\) - \(\sec^2(0) = 1\) Substituting these values: \[ \frac{dy}{dx} \bigg|_{x=0} = \frac{-2 \cdot 1}{(0 - 1)^2} = \frac{-2}{1} = -2 \] ### Final Answer Thus, \(\frac{dy}{dx}\) at \(x = 0\) is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

If y=tan^(-1)((1-cosx)/(sinx)), then (dy)/(dx) is

If y=tan^(-1)((sinx+cosx)/(cosx-sinx)) , then (dy)/(dx) is equal to (a) 1/2 (b) 0 (c) 1 (d) none of these

If y=(sinx)^(tanx)+(cosx)^(secx) , find (dy)/(dx)

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

ysinx dy/dx=(sinx-y^2)cosx

If y=x^(cosx)+(sinx)^(tanx) , find (dy)/(dx)

If y=(sinx-cosx)^(sinx-cosx) , pi/4 ltxlt (3pi)/ 4 find dy/dx

If y=(sinx-cosx)^(sinx-cosx) , pi/4 ltxlt (3pi)/ 4 find dy/dx

Evaluate: int(sinx+cosx)/(sinx-cosx)dx

ICSE-LIMITS AND DERIVATIVES -Multiple Choice Questions
  1. If y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx)" at "x=0 is

    Text Solution

    |

  2. Lt(xto0)(sqrt(1+x)-1)/(x) is equal to (i) 0 (ii) 1 (iii) 1/2 ...

    Text Solution

    |

  3. Lt(xto0)(x)/(sin3x) is equal to (i) 3 (ii) 1/3 (iii) 0 (iv) 1

    Text Solution

    |

  4. Lt(xto0)(sqrt(4+x)-2)/(sinx) is equal to (i) 4 (ii) 1 (iii) 1/4...

    Text Solution

    |

  5. If Lt(x to a)(x^(9)-a^(9))/(x-a)=Lt(xto5)(x+4) then all possible value...

    Text Solution

    |

  6. Let f(x)={:{(x+2",",xle-1),(cx^(2)",",xgt-1):} If Lt(xto-1) f(x) exist...

    Text Solution

    |

  7. lim{x\rightarrow 0}(1-cos2x)/(sin^(2)2x) is equal to

    Text Solution

    |

  8. Lt(x to0)(tan3x-2x)/(3x-sin^(2)x) is equal to

    Text Solution

    |

  9. lim{x\rightarrow 0}(1-cosmx)/(1-cos nx) is equal to

    Text Solution

    |

  10. lim{x\rightarrow 0}(cosx-cos3x)/(x(sin 3x-sinx)) is equal to

    Text Solution

    |

  11. Lt(xto0)((1-cos2x)sin5x)/(x^(2)sin3x) is equal to (i) (6)/(5) (ii...

    Text Solution

    |

  12. If Lim(x to 0) k . cosec x=Lim(x to 0)x cosec kx, then k is (i) -1,1...

    Text Solution

    |

  13. Lt(x to pi)(sinx)/(x-pi) is equal to

    Text Solution

    |

  14. Lt(xto1)(sinpix)/(x-1) is equal to

    Text Solution

    |

  15. Lt(x to (pi)/(2))(2x-pi)/(cos x) is equal to

    Text Solution

    |

  16. Lt(x to (pi)/(2))(pi/2-x)tan x is equal to (i) 1 (ii) -1 (iii) (pi)...

    Text Solution

    |

  17. (lim)(x->pi/2)(tan2x)/(x-pi/2)

    Text Solution

    |

  18. Lt(x to 0)(e^(x)+sinx-1)/(3x) is equal to (i) 1/3 (ii) -1/3 (iii) 2/3...

    Text Solution

    |

  19. lim(x to 2)(log(x-1))/(x-2) is equal to

    Text Solution

    |

  20. lim(x to 0)(3^(2x)-2^(3x))/(x) is equal to

    Text Solution

    |

  21. Lt(x to 0)(|x|)/(x) is equal to (i) 1 (ii) -1 (iii) 0 (iv) does not e...

    Text Solution

    |