Home
Class 11
MATHS
If f(9)=9" and f'"(9)=4 then Lt(x to 9)(...

If `f(9)=9" and f'"(9)=4` then `Lt_(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3)` is equal to

A

2

B

3

C

4

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \(\lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3}\), given that \(f(9) = 9\) and \(f'(9) = 4\), we can follow these steps: ### Step-by-Step Solution: 1. **Substitution**: Start by substituting \(x = 9\) into the limit expression. \[ \lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3} = \frac{\sqrt{f(9)} - 3}{\sqrt{9} - 3} = \frac{\sqrt{9} - 3}{3 - 3} = \frac{3 - 3}{0} = \frac{0}{0} \] This is an indeterminate form. **Hint**: If you encounter a \(0/0\) form, consider using L'Hôpital's rule. 2. **Applying L'Hôpital's Rule**: Since we have an indeterminate form, we can apply L'Hôpital's rule, which states that we can take the derivative of the numerator and the denominator separately. \[ \lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3} = \lim_{x \to 9} \frac{\frac{d}{dx}(\sqrt{f(x)})}{\frac{d}{dx}(\sqrt{x})} \] 3. **Differentiate the Numerator and Denominator**: - The derivative of the numerator \(\sqrt{f(x)}\) is: \[ \frac{d}{dx}(\sqrt{f(x)}) = \frac{f'(x)}{2\sqrt{f(x)}} \] - The derivative of the denominator \(\sqrt{x}\) is: \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \] 4. **Substituting Back into the Limit**: \[ \lim_{x \to 9} \frac{\frac{f'(x)}{2\sqrt{f(x)}}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to 9} \frac{f'(x) \cdot 2\sqrt{x}}{2\sqrt{f(x)}} \] This simplifies to: \[ \lim_{x \to 9} \frac{f'(x) \cdot \sqrt{x}}{\sqrt{f(x)}} \] 5. **Evaluate the Limit**: Now substitute \(x = 9\): \[ = \frac{f'(9) \cdot \sqrt{9}}{\sqrt{f(9)}} = \frac{4 \cdot 3}{3} = 4 \] ### Final Answer: Thus, the limit is: \[ \lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3} = 4 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

If f be a function such that f(9)=9 and f'(9)=3 , then lim_(xto9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to

If f(4)=g(4)=2 , f^(prime)(4)=9,g^(prime)(4)=6, then (lim)_(xto4)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to (a) 3sqrt(2) b. 3/(sqrt(2)) c. 0 d. does not exists

If f(9)=9,f^(prime)(9)=4,t h e n("lim")_(x->9)(sqrtf(x)-3)/(sqrtx-3)= ___________.

Find the values of x for which the following functions are identical. (i) f(x)=x " and " g(x)=(1)/(1//x) (ii) f(x)=(sqrt(9-x^(2)))/(sqrt(x-2)) " and " g(x)=sqrt((9-x^(2))/(x-2))

The domain of the function f(x)=4-sqrt(x^(2)-9) is

Find the range of f(x)=sqrt(1-sqrt(x^2-6x+9))

int_(0)^(9)sqrt(x)/(sqrt(x)+sqrt(9-x))dx=(9)/(2)

The domain of the function f(x)= sqrt(9-x^(2)) is :

If f(x) = 7x + 9 and g(x) = 7x^(2) - 3 , then (f - g)(x) is equal to

If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f (x))/(sqrt2-f (x))|+C where f (x) = sin x + cos x find the value of (12A+9sqrt2V)-3.

ICSE-LIMITS AND DERIVATIVES -Multiple Choice Questions
  1. If f(9)=9" and f'"(9)=4 then Lt(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3) is e...

    Text Solution

    |

  2. Lt(xto0)(sqrt(1+x)-1)/(x) is equal to (i) 0 (ii) 1 (iii) 1/2 ...

    Text Solution

    |

  3. Lt(xto0)(x)/(sin3x) is equal to (i) 3 (ii) 1/3 (iii) 0 (iv) 1

    Text Solution

    |

  4. Lt(xto0)(sqrt(4+x)-2)/(sinx) is equal to (i) 4 (ii) 1 (iii) 1/4...

    Text Solution

    |

  5. If Lt(x to a)(x^(9)-a^(9))/(x-a)=Lt(xto5)(x+4) then all possible value...

    Text Solution

    |

  6. Let f(x)={:{(x+2",",xle-1),(cx^(2)",",xgt-1):} If Lt(xto-1) f(x) exist...

    Text Solution

    |

  7. lim{x\rightarrow 0}(1-cos2x)/(sin^(2)2x) is equal to

    Text Solution

    |

  8. Lt(x to0)(tan3x-2x)/(3x-sin^(2)x) is equal to

    Text Solution

    |

  9. lim{x\rightarrow 0}(1-cosmx)/(1-cos nx) is equal to

    Text Solution

    |

  10. lim{x\rightarrow 0}(cosx-cos3x)/(x(sin 3x-sinx)) is equal to

    Text Solution

    |

  11. Lt(xto0)((1-cos2x)sin5x)/(x^(2)sin3x) is equal to (i) (6)/(5) (ii...

    Text Solution

    |

  12. If Lim(x to 0) k . cosec x=Lim(x to 0)x cosec kx, then k is (i) -1,1...

    Text Solution

    |

  13. Lt(x to pi)(sinx)/(x-pi) is equal to

    Text Solution

    |

  14. Lt(xto1)(sinpix)/(x-1) is equal to

    Text Solution

    |

  15. Lt(x to (pi)/(2))(2x-pi)/(cos x) is equal to

    Text Solution

    |

  16. Lt(x to (pi)/(2))(pi/2-x)tan x is equal to (i) 1 (ii) -1 (iii) (pi)...

    Text Solution

    |

  17. (lim)(x->pi/2)(tan2x)/(x-pi/2)

    Text Solution

    |

  18. Lt(x to 0)(e^(x)+sinx-1)/(3x) is equal to (i) 1/3 (ii) -1/3 (iii) 2/3...

    Text Solution

    |

  19. lim(x to 2)(log(x-1))/(x-2) is equal to

    Text Solution

    |

  20. lim(x to 0)(3^(2x)-2^(3x))/(x) is equal to

    Text Solution

    |

  21. Lt(x to 0)(|x|)/(x) is equal to (i) 1 (ii) -1 (iii) 0 (iv) does not e...

    Text Solution

    |