Home
Class 11
MATHS
Lt(xto0)(sqrt(4+x)-2)/(sinx) is equal to...

`Lt_(xto0)(sqrt(4+x)-2)/(sinx)` is equal to
(i) 4
(ii) 1
(iii) `1/4`
(iv) 0

A

4

B

1

C

`1/4`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sqrt{4+x} - 2}{\sin x} \), we can follow these steps: ### Step 1: Rationalize the Numerator We start by rationalizing the numerator. We multiply the numerator and the denominator by the conjugate of the numerator, which is \( \sqrt{4+x} + 2 \): \[ \lim_{x \to 0} \frac{\sqrt{4+x} - 2}{\sin x} \cdot \frac{\sqrt{4+x} + 2}{\sqrt{4+x} + 2} \] ### Step 2: Simplify the Expression This gives us: \[ \lim_{x \to 0} \frac{(\sqrt{4+x} - 2)(\sqrt{4+x} + 2)}{\sin x (\sqrt{4+x} + 2)} \] Using the difference of squares, we can simplify the numerator: \[ \sqrt{4+x}^2 - 2^2 = (4+x) - 4 = x \] So our limit now looks like: \[ \lim_{x \to 0} \frac{x}{\sin x (\sqrt{4+x} + 2)} \] ### Step 3: Split the Limit Now we can separate the limit: \[ \lim_{x \to 0} \frac{x}{\sin x} \cdot \lim_{x \to 0} \frac{1}{\sqrt{4+x} + 2} \] ### Step 4: Evaluate the Limits We know from the standard limit that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \Rightarrow \quad \lim_{x \to 0} \frac{x}{\sin x} = 1 \] Now, we evaluate the second limit: \[ \lim_{x \to 0} \frac{1}{\sqrt{4+x} + 2} = \frac{1}{\sqrt{4+0} + 2} = \frac{1}{2 + 2} = \frac{1}{4} \] ### Step 5: Combine the Results Now we combine both results: \[ \lim_{x \to 0} \frac{x}{\sin x} \cdot \lim_{x \to 0} \frac{1}{\sqrt{4+x} + 2} = 1 \cdot \frac{1}{4} = \frac{1}{4} \] Thus, the final answer is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

Lt_(xto0)(sqrt(1+x)-1)/(x) is equal to (i) 0 (ii) 1 (iii) 1/2 (iv) 2

Lt_(xto0)(x)/(sin3x) is equal to (i) 3 (ii) 1/3 (iii) 0 (iv) 1

Lt_(xto0)(x^(2)cosx)/(1-cosx) is equal to

Lt_(x to 0)(e^(x)+sinx-1)/(3x) is equal to (i) 1/3 (ii) -1/3 (iii) 2/3 (iv) -2/3

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

lim_(xto0)(3-3tan((pi)/4-x))/(sin2x) is equal to

Lt_(xto0)(|sinx|)/(x) is equal to (i) 1 (ii) -1 (iii) does not exist (iv) none of these

Lt_(xto0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

Lt_(xto(pi)/(2))(1-sinx)/(cosx) is equal to

Lt_(x to 0)(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+4)-2) is equal to (i) 4 (ii) -4 (iii) 8 (iv) -8

ICSE-LIMITS AND DERIVATIVES -Multiple Choice Questions
  1. Lt(xto0)(sqrt(1+x)-1)/(x) is equal to (i) 0 (ii) 1 (iii) 1/2 ...

    Text Solution

    |

  2. Lt(xto0)(x)/(sin3x) is equal to (i) 3 (ii) 1/3 (iii) 0 (iv) 1

    Text Solution

    |

  3. Lt(xto0)(sqrt(4+x)-2)/(sinx) is equal to (i) 4 (ii) 1 (iii) 1/4...

    Text Solution

    |

  4. If Lt(x to a)(x^(9)-a^(9))/(x-a)=Lt(xto5)(x+4) then all possible value...

    Text Solution

    |

  5. Let f(x)={:{(x+2",",xle-1),(cx^(2)",",xgt-1):} If Lt(xto-1) f(x) exist...

    Text Solution

    |

  6. lim{x\rightarrow 0}(1-cos2x)/(sin^(2)2x) is equal to

    Text Solution

    |

  7. Lt(x to0)(tan3x-2x)/(3x-sin^(2)x) is equal to

    Text Solution

    |

  8. lim{x\rightarrow 0}(1-cosmx)/(1-cos nx) is equal to

    Text Solution

    |

  9. lim{x\rightarrow 0}(cosx-cos3x)/(x(sin 3x-sinx)) is equal to

    Text Solution

    |

  10. Lt(xto0)((1-cos2x)sin5x)/(x^(2)sin3x) is equal to (i) (6)/(5) (ii...

    Text Solution

    |

  11. If Lim(x to 0) k . cosec x=Lim(x to 0)x cosec kx, then k is (i) -1,1...

    Text Solution

    |

  12. Lt(x to pi)(sinx)/(x-pi) is equal to

    Text Solution

    |

  13. Lt(xto1)(sinpix)/(x-1) is equal to

    Text Solution

    |

  14. Lt(x to (pi)/(2))(2x-pi)/(cos x) is equal to

    Text Solution

    |

  15. Lt(x to (pi)/(2))(pi/2-x)tan x is equal to (i) 1 (ii) -1 (iii) (pi)...

    Text Solution

    |

  16. (lim)(x->pi/2)(tan2x)/(x-pi/2)

    Text Solution

    |

  17. Lt(x to 0)(e^(x)+sinx-1)/(3x) is equal to (i) 1/3 (ii) -1/3 (iii) 2/3...

    Text Solution

    |

  18. lim(x to 2)(log(x-1))/(x-2) is equal to

    Text Solution

    |

  19. lim(x to 0)(3^(2x)-2^(3x))/(x) is equal to

    Text Solution

    |

  20. Lt(x to 0)(|x|)/(x) is equal to (i) 1 (ii) -1 (iii) 0 (iv) does not e...

    Text Solution

    |