Home
Class 11
MATHS
lim{x\rightarrow 0}(cosx-cos3x)/(x(sin 3...

`lim_{x\rightarrow 0}(cosx-cos3x)/(x(sin 3x-sinx))` is equal to

A

(a) `-2/3`

B

(b) `1/3`

C

(c) `-1/2`

D

(d) 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x\rightarrow 0}\frac{\cos x - \cos 3x}{x(\sin 3x - \sin x)} \), we will follow these steps: ### Step 1: Identify the form of the limit As \( x \) approaches 0, both the numerator and denominator approach 0. This gives us the indeterminate form \( \frac{0}{0} \). Therefore, we need to simplify the expression. **Hint:** When you encounter a \( \frac{0}{0} \) form, consider using trigonometric identities or L'Hôpital's Rule. ### Step 2: Use trigonometric identities We can use the identities for the difference of cosines and sines: - \( \cos a - \cos b = -2 \sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right) \) - \( \sin a - \sin b = 2 \cos\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right) \) For the numerator \( \cos x - \cos 3x \): - Let \( a = x \) and \( b = 3x \). - Thus, \( \cos x - \cos 3x = -2 \sin\left(\frac{x + 3x}{2}\right)\sin\left(\frac{x - 3x}{2}\right) = -2 \sin(2x)\sin(-x) = 2 \sin(2x) \sin(x) \). For the denominator \( \sin 3x - \sin x \): - Let \( a = 3x \) and \( b = x \). - Thus, \( \sin 3x - \sin x = 2 \cos\left(\frac{3x + x}{2}\right)\sin\left(\frac{3x - x}{2}\right) = 2 \cos(2x) \sin(x) \). ### Step 3: Substitute back into the limit Now we can rewrite the limit: \[ \lim_{x\rightarrow 0} \frac{2 \sin(2x) \sin(x)}{x \cdot 2 \cos(2x) \sin(x)} \] This simplifies to: \[ \lim_{x\rightarrow 0} \frac{\sin(2x)}{x \cos(2x)} \] **Hint:** When simplifying limits, try to cancel common factors. ### Step 4: Simplify further We can separate the limit: \[ \lim_{x\rightarrow 0} \frac{\sin(2x)}{2x} \cdot \frac{2}{\cos(2x)} \] As \( x \) approaches 0, \( \frac{\sin(2x)}{2x} \) approaches 1 and \( \cos(2x) \) approaches 1. ### Step 5: Evaluate the limit Thus, we have: \[ \lim_{x\rightarrow 0} \frac{\sin(2x)}{2x} = 1 \quad \text{and} \quad \lim_{x\rightarrow 0} \frac{2}{\cos(2x)} = \frac{2}{1} = 2 \] Therefore, the overall limit is: \[ 1 \cdot 2 = 2 \] ### Conclusion The limit evaluates to: \[ \lim_{x\rightarrow 0}\frac{\cos x - \cos 3x}{x(\sin 3x - \sin x)} = 2 \] The correct answer is option **d) 2**. ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

lim_{x\rightarrow 0}(1-cos2x)/(sin^(2)2x) is equal to

(cos^3x-sin^3x)/(cosx-sinx)

lim_{x\rightarrow 0}(1-cosmx)/(1-cos nx) is equal to

lim _{x \rightarrow 0} sin x. log x

lim _{x \rightarrow 0} sin x. log x

lim_(xrarr0) (x cos x-sinx)/(x^(2)sin x)

lim_(xrarr0)(tan2x-x)/(3x-sinx) is equal to

lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to

The value of lim_(xrarr0)(1-cos^(3)x)/(sin^(2)xcos x) is equal to

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

ICSE-LIMITS AND DERIVATIVES -Multiple Choice Questions
  1. Lt(x to0)(tan3x-2x)/(3x-sin^(2)x) is equal to

    Text Solution

    |

  2. lim{x\rightarrow 0}(1-cosmx)/(1-cos nx) is equal to

    Text Solution

    |

  3. lim{x\rightarrow 0}(cosx-cos3x)/(x(sin 3x-sinx)) is equal to

    Text Solution

    |

  4. Lt(xto0)((1-cos2x)sin5x)/(x^(2)sin3x) is equal to (i) (6)/(5) (ii...

    Text Solution

    |

  5. If Lim(x to 0) k . cosec x=Lim(x to 0)x cosec kx, then k is (i) -1,1...

    Text Solution

    |

  6. Lt(x to pi)(sinx)/(x-pi) is equal to

    Text Solution

    |

  7. Lt(xto1)(sinpix)/(x-1) is equal to

    Text Solution

    |

  8. Lt(x to (pi)/(2))(2x-pi)/(cos x) is equal to

    Text Solution

    |

  9. Lt(x to (pi)/(2))(pi/2-x)tan x is equal to (i) 1 (ii) -1 (iii) (pi)...

    Text Solution

    |

  10. (lim)(x->pi/2)(tan2x)/(x-pi/2)

    Text Solution

    |

  11. Lt(x to 0)(e^(x)+sinx-1)/(3x) is equal to (i) 1/3 (ii) -1/3 (iii) 2/3...

    Text Solution

    |

  12. lim(x to 2)(log(x-1))/(x-2) is equal to

    Text Solution

    |

  13. lim(x to 0)(3^(2x)-2^(3x))/(x) is equal to

    Text Solution

    |

  14. Lt(x to 0)(|x|)/(x) is equal to (i) 1 (ii) -1 (iii) 0 (iv) does not e...

    Text Solution

    |

  15. Lt(x to (3)/(2))[x] is equal to (i) 1 (ii) -1 (iii) 2 (iv) does not e...

    Text Solution

    |

  16. Lt(x to 0)(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+4)-2) is equal to (i) 4...

    Text Solution

    |

  17. Lt(xto0)(x^(2)cosx)/(1-cosx) is equal to

    Text Solution

    |

  18. Lt(xto0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  19. Lt(xto0)(|sinx|)/(x) is equal to (i) 1 (ii) -1 (iii) does not exist ...

    Text Solution

    |

  20. The derivative of 2x^(3)-3x^(2)-5x+6 at x=1 is

    Text Solution

    |