Home
Class 11
MATHS
Lt(xto0)((1-cos2x)sin5x)/(x^(2)sin3x) is...

`Lt_(xto0)((1-cos2x)sin5x)/(x^(2)sin3x)` is equal to
(i) `(6)/(5)`
(ii) `5/6`
(iii) `10/3`
(iv) `3/10`

A

`(6)/(5)`

B

`5/6`

C

`10/3`

D

`3/10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{(1 - \cos 2x) \sin 5x}{x^2 \sin 3x} \), we can follow these steps: ### Step 1: Rewrite the limit We can separate the limit into two parts: \[ \lim_{x \to 0} \frac{1 - \cos 2x}{x^2} \cdot \lim_{x \to 0} \frac{\sin 5x}{\sin 3x} \] ### Step 2: Use the identity for \( 1 - \cos 2x \) Using the trigonometric identity \( 1 - \cos 2x = 2 \sin^2 x \), we can rewrite the limit: \[ \lim_{x \to 0} \frac{2 \sin^2 x}{x^2} \cdot \lim_{x \to 0} \frac{\sin 5x}{\sin 3x} \] ### Step 3: Simplify the first limit The limit \( \lim_{x \to 0} \frac{\sin^2 x}{x^2} \) can be simplified using the fact that \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \): \[ \lim_{x \to 0} \frac{2 \sin^2 x}{x^2} = 2 \cdot \left( \lim_{x \to 0} \frac{\sin x}{x} \right)^2 = 2 \cdot 1^2 = 2 \] ### Step 4: Simplify the second limit For the second limit \( \lim_{x \to 0} \frac{\sin 5x}{\sin 3x} \), we can use the fact that \( \lim_{x \to 0} \frac{\sin kx}{kx} = 1 \): \[ \lim_{x \to 0} \frac{\sin 5x}{\sin 3x} = \lim_{x \to 0} \frac{5x}{3x} = \frac{5}{3} \] ### Step 5: Combine the limits Now we can combine the results from the two limits: \[ \lim_{x \to 0} \frac{(1 - \cos 2x) \sin 5x}{x^2 \sin 3x} = 2 \cdot \frac{5}{3} = \frac{10}{3} \] ### Final Answer Thus, the limit is: \[ \frac{10}{3} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

Lt_(x to 0)(e^(x)+sinx-1)/(3x) is equal to (i) 1/3 (ii) -1/3 (iii) 2/3 (iv) -2/3

Lt_(xto0)(x)/(sin3x) is equal to (i) 3 (ii) 1/3 (iii) 0 (iv) 1

lim_(xto0)(3-3tan((pi)/4-x))/(sin2x) is equal to

Lt_(xto0)(sqrt(4+x)-2)/(sinx) is equal to (i) 4 (ii) 1 (iii) 1/4 (iv) 0

Lt_(x to 0)(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+4)-2) is equal to (i) 4 (ii) -4 (iii) 8 (iv) -8

Lt_(xto0)(sqrt(1+x)-1)/(x) is equal to (i) 0 (ii) 1 (iii) 1/2 (iv) 2

Lt_(xto0)(|sinx|)/(x) is equal to (i) 1 (ii) -1 (iii) does not exist (iv) none of these

If f(x)=((3x+1)(2sqrt(x)-1))/(sqrt(x)) , then f'(1) is equal to (i) 5 (ii) -5 (iii) 6 (iv) (11)/(2)

Lt_(x to (3)/(2))[x] is equal to (i) 1 (ii) -1 (iii) 2 (iv) does not exist

ICSE-LIMITS AND DERIVATIVES -Multiple Choice Questions
  1. lim{x\rightarrow 0}(1-cosmx)/(1-cos nx) is equal to

    Text Solution

    |

  2. lim{x\rightarrow 0}(cosx-cos3x)/(x(sin 3x-sinx)) is equal to

    Text Solution

    |

  3. Lt(xto0)((1-cos2x)sin5x)/(x^(2)sin3x) is equal to (i) (6)/(5) (ii...

    Text Solution

    |

  4. If Lim(x to 0) k . cosec x=Lim(x to 0)x cosec kx, then k is (i) -1,1...

    Text Solution

    |

  5. Lt(x to pi)(sinx)/(x-pi) is equal to

    Text Solution

    |

  6. Lt(xto1)(sinpix)/(x-1) is equal to

    Text Solution

    |

  7. Lt(x to (pi)/(2))(2x-pi)/(cos x) is equal to

    Text Solution

    |

  8. Lt(x to (pi)/(2))(pi/2-x)tan x is equal to (i) 1 (ii) -1 (iii) (pi)...

    Text Solution

    |

  9. (lim)(x->pi/2)(tan2x)/(x-pi/2)

    Text Solution

    |

  10. Lt(x to 0)(e^(x)+sinx-1)/(3x) is equal to (i) 1/3 (ii) -1/3 (iii) 2/3...

    Text Solution

    |

  11. lim(x to 2)(log(x-1))/(x-2) is equal to

    Text Solution

    |

  12. lim(x to 0)(3^(2x)-2^(3x))/(x) is equal to

    Text Solution

    |

  13. Lt(x to 0)(|x|)/(x) is equal to (i) 1 (ii) -1 (iii) 0 (iv) does not e...

    Text Solution

    |

  14. Lt(x to (3)/(2))[x] is equal to (i) 1 (ii) -1 (iii) 2 (iv) does not e...

    Text Solution

    |

  15. Lt(x to 0)(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+4)-2) is equal to (i) 4...

    Text Solution

    |

  16. Lt(xto0)(x^(2)cosx)/(1-cosx) is equal to

    Text Solution

    |

  17. Lt(xto0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  18. Lt(xto0)(|sinx|)/(x) is equal to (i) 1 (ii) -1 (iii) does not exist ...

    Text Solution

    |

  19. The derivative of 2x^(3)-3x^(2)-5x+6 at x=1 is

    Text Solution

    |

  20. If f(x)=1-x+x^(2)-x^(3)+ . . .-x^(99)+x^(100) then f'(1) is equal to

    Text Solution

    |