Home
Class 11
MATHS
Lt(x to (pi)/(2))(pi/2-x)tan x is equal ...

`Lt_(x to (pi)/(2))(pi/2-x)tan x` is equal to (i) 1 (ii) `-1` (iii) `(pi)/(2)` (iv) `(2)/(pi)`

A

1

B

`-1`

C

`(pi)/(2)`

D

`(2)/(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x \), we can follow these steps: ### Step 1: Substitute \( y = \frac{\pi}{2} - x \) Let \( y = \frac{\pi}{2} - x \). As \( x \) approaches \( \frac{\pi}{2} \), \( y \) approaches \( 0 \). Therefore, we can rewrite the limit in terms of \( y \): \[ \lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x = \lim_{y \to 0} y \tan\left(\frac{\pi}{2} - y\right) \] ### Step 2: Use the identity for tangent Using the identity \( \tan\left(\frac{\pi}{2} - y\right) = \cot y \), we can rewrite the limit: \[ \lim_{y \to 0} y \tan\left(\frac{\pi}{2} - y\right) = \lim_{y \to 0} y \cot y \] ### Step 3: Rewrite cotangent in terms of sine and cosine Recall that \( \cot y = \frac{\cos y}{\sin y} \), so we have: \[ \lim_{y \to 0} y \cot y = \lim_{y \to 0} y \cdot \frac{\cos y}{\sin y} = \lim_{y \to 0} \frac{y \cos y}{\sin y} \] ### Step 4: Evaluate the limit As \( y \to 0 \), \( \cos y \to 1 \), so we can simplify: \[ \lim_{y \to 0} \frac{y \cos y}{\sin y} = \lim_{y \to 0} \frac{y}{\sin y} \cdot \cos y \] We know that \( \lim_{y \to 0} \frac{y}{\sin y} = 1 \). Therefore: \[ \lim_{y \to 0} \frac{y \cos y}{\sin y} = 1 \cdot 1 = 1 \] ### Conclusion Thus, we find that: \[ \lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x = 1 \] The correct option is (i) 1.
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

Lt_(x to (pi)/(2))(2x-pi)/(cos x) is equal to

Lt_(x to pi)(sinx)/(x-pi) is equal to

The argument of -I is: (i) pi (ii) -pi (iii) -(pi)/2 (iv) (pi)/2

If n=2m+1,m in N uu {0}, then int_0^(pi/2)(sin nx)/(sin x) dx is equal to (i) pi (ii) pi/2 (iii) pi/4 (iv) none of these

The argument of (1+i)/(1-i) is (i) 0 (ii) -(pi)/(2) (iii) (pi)/(2) (iv) pi

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

int_(-pi//4)^(pi//4) \ (e^x sec^2 \ dx)/(e^(2x)-1) is equal to (i) 0 (ii) 2 (iii) e (iv)none of these

If the equation x^2 +4x sintheta + tantheta=0\ (0 < theta < pi/2) has repeated roots, then theta equals (i) pi/12 (ii) pi/6 (iii) pi/12 or (5pi)/12 (iv) pi/6 or pi/12

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to(A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

int_(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to