Home
Class 11
MATHS
lim(x to 0)(3^(2x)-2^(3x))/(x) is equal ...

`lim_(x to 0)(3^(2x)-2^(3x))/(x)` is equal to

A

A. 2 log `(3)/(2)`

B

B. 3 log `2/3`

C

C. log `9/8`

D

D. log `8/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{3^{2x} - 2^{3x}}{x} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit expression: \[ \lim_{x \to 0} \frac{3^{2x} - 2^{3x}}{x} \] To simplify, we can add and subtract 1 in the numerator: \[ \lim_{x \to 0} \frac{(3^{2x} - 1) - (2^{3x} - 1)}{x} \] ### Step 2: Split the limit We can split the limit into two separate limits: \[ \lim_{x \to 0} \frac{3^{2x} - 1}{x} - \lim_{x \to 0} \frac{2^{3x} - 1}{x} \] ### Step 3: Use the limit identity We can use the limit identity \( \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \) for both terms. For the first term: \[ \lim_{x \to 0} \frac{3^{2x} - 1}{x} = \lim_{x \to 0} \frac{(3^2)^x - 1}{x} = 2 \ln 3 \] For the second term: \[ \lim_{x \to 0} \frac{2^{3x} - 1}{x} = \lim_{x \to 0} \frac{(2^3)^x - 1}{x} = 3 \ln 2 \] ### Step 4: Combine the results Now we can combine the results from both limits: \[ 2 \ln 3 - 3 \ln 2 \] ### Step 5: Simplify the expression We can express this as: \[ 2 \ln 3 - 3 \ln 2 = \ln(3^2) - \ln(2^3) = \ln\left(\frac{3^2}{2^3}\right) = \ln\left(\frac{9}{8}\right) \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{3^{2x} - 2^{3x}}{x} = \ln\left(\frac{9}{8}\right) \] ### Options The correct answer corresponds to option C: \( \ln\left(\frac{9}{8}\right) \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (sin^(2) x//4)/(x) is equal to

lim_(x to 2) (x^(2) - 4)/(x + 3) is equal to

Evaluate the following limits : lim_(x to 0) (3^(2x)-2^(3x))/x

If f (x) = x^(4) + 2x^(3) , them lim_(x to 2) (f(x) - f(2))/(x - 2) is equal to

Evaluate the following limits : Lim_(x to 0) (3^(2x)-2^(3x))/x

lim_(x to 0) (2x)/(tan3x)=?

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

lim_(x to 0) (log (1 + 2x))/(x) + lim_(x to 0) (x^(4) - 2^(4))/(x - 2) equals

Evaluate : lim_(x to 0 ) (3^(x) -2^(x))/(tanx)

lim_(xto0)(3-3tan((pi)/4-x))/(sin2x) is equal to