Home
Class 11
MATHS
Lt(x to 0)(cos^(2)x-sin^(2)x-1)/(sqrt(x^...

`Lt_(x to 0)(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+4)-2)` is equal to
(i) 4
(ii) `-4`
(iii) 8
(iv) `-8`

A

4

B

`-4`

C

8

D

`-8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 4} - 2} \), we will follow these steps: ### Step 1: Simplify the numerator The numerator can be rewritten using the identity \( \cos^2 x - \sin^2 x = \cos(2x) \): \[ \cos^2 x - \sin^2 x - 1 = \cos(2x) - 1 \] Thus, the limit becomes: \[ \lim_{x \to 0} \frac{\cos(2x) - 1}{\sqrt{x^2 + 4} - 2} \] ### Step 2: Use the identity for cosine Using the identity \( \cos(2x) - 1 = -2\sin^2(x) \), we can rewrite the numerator: \[ \lim_{x \to 0} \frac{-2\sin^2(x)}{\sqrt{x^2 + 4} - 2} \] ### Step 3: Rationalize the denominator To simplify the denominator, we can rationalize it by multiplying the numerator and denominator by the conjugate of the denominator: \[ \sqrt{x^2 + 4} + 2 \] So we have: \[ \lim_{x \to 0} \frac{-2\sin^2(x)(\sqrt{x^2 + 4} + 2)}{(\sqrt{x^2 + 4} - 2)(\sqrt{x^2 + 4} + 2)} \] The denominator simplifies as follows: \[ (\sqrt{x^2 + 4})^2 - 2^2 = x^2 + 4 - 4 = x^2 \] Thus, the limit becomes: \[ \lim_{x \to 0} \frac{-2\sin^2(x)(\sqrt{x^2 + 4} + 2)}{x^2} \] ### Step 4: Substitute the limit Now we can separate the limit: \[ \lim_{x \to 0} -2 \cdot \frac{\sin^2(x)}{x^2} \cdot (\sqrt{x^2 + 4} + 2) \] Using the fact that \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \), we get: \[ \lim_{x \to 0} -2 \cdot 1 \cdot (\sqrt{0^2 + 4} + 2) = -2 \cdot (2 + 2) = -2 \cdot 4 = -8 \] ### Final Answer Thus, the limit is: \[ \boxed{-8} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

Lt_(xto0)(sqrt(4+x)-2)/(sinx) is equal to (i) 4 (ii) 1 (iii) 1/4 (iv) 0

Lt_(xto0)(sqrt(1+x)-1)/(x) is equal to (i) 0 (ii) 1 (iii) 1/2 (iv) 2

Lt_(xto0)(x)/(sin3x) is equal to (i) 3 (ii) 1/3 (iii) 0 (iv) 1

lim_(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to

Lt_(xto0)((1-cos2x)sin5x)/(x^(2)sin3x) is equal to (i) (6)/(5) (ii) 5/6 (iii) 10/3 (iv) 3/10

Lt_(x to (3)/(2))[x] is equal to (i) 1 (ii) -1 (iii) 2 (iv) does not exist

Lt_(x to 0)(|x|)/(x) is equal to (i) 1 (ii) -1 (iii) 0 (iv) does not exist

Lt_(x to (pi)/(2))(pi/2-x)tan x is equal to (i) 1 (ii) -1 (iii) (pi)/(2) (iv) (2)/(pi)

int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(4))x)dx is equal to

Solve (x^2-4)sqrt(x^2 -1) lt 0.