Home
Class 11
MATHS
Lt(xto0)(x^(2)cosx)/(1-cosx) is equal to...

`Lt_(xto0)(x^(2)cosx)/(1-cosx)` is equal to

A

2

B

`(3)/(2)`

C

`-(3)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{x^2 \cos x}{1 - \cos x} \), we will follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( x = 0 \) into the expression: \[ \frac{0^2 \cos(0)}{1 - \cos(0)} = \frac{0}{0} \] Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: \[ \text{Numerator: } \frac{d}{dx}(x^2 \cos x) = 2x \cos x - x^2 \sin x \] \[ \text{Denominator: } \frac{d}{dx}(1 - \cos x) = \sin x \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{2x \cos x - x^2 \sin x}{\sin x} \] ### Step 3: Substitute \( x = 0 \) again Now, substituting \( x = 0 \) again gives: \[ \frac{2(0) \cos(0) - 0^2 \sin(0)}{\sin(0)} = \frac{0}{0} \] We still have an indeterminate form, so we apply L'Hôpital's Rule again. ### Step 4: Differentiate again Differentiate the numerator and denominator again: \[ \text{Numerator: } \frac{d}{dx}(2x \cos x - x^2 \sin x) = 2\cos x - 2x \sin x - (2x \sin x + x^2 \cos x) = 2\cos x - 4x \sin x - x^2 \cos x \] \[ \text{Denominator: } \frac{d}{dx}(\sin x) = \cos x \] Thus, we have: \[ \lim_{x \to 0} \frac{2\cos x - 4x \sin x - x^2 \cos x}{\cos x} \] ### Step 5: Substitute \( x = 0 \) again Now substituting \( x = 0 \): \[ \frac{2\cos(0) - 4(0)\sin(0) - 0^2 \cos(0)}{\cos(0)} = \frac{2 \cdot 1 - 0 - 0}{1} = 2 \] ### Conclusion Thus, the limit is: \[ \lim_{x \to 0} \frac{x^2 \cos x}{1 - \cos x} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(x^(2)cosx)/(1-cosx) is equal to

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

Lt_(xto(pi)/(2))(1-sinx)/(cosx) is equal to

lim_(x->0)(x(e^x-1))/(1-cosx) is equal to

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

Lt_(xto0)(sqrt(4+x)-2)/(sinx) is equal to (i) 4 (ii) 1 (iii) 1/4 (iv) 0

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to

Lt_(xto0)(sqrt(1+x)-1)/(x) is equal to (i) 0 (ii) 1 (iii) 1/2 (iv) 2

Lt_(xto0)(|sinx|)/(x) is equal to (i) 1 (ii) -1 (iii) does not exist (iv) none of these