Home
Class 11
MATHS
If f(x)=1-x+x^(2)-x^(3)+ . . .-x^(99)+x^...

If `f(x)=1-x+x^(2)-x^(3)+ . . .-x^(99)+x^(100)` then `f'(1)` is equal to

A

A. 100

B

B. 50

C

C. 49

D

D. 51

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) = 1 - x + x^2 - x^3 + \ldots - x^{99} + x^{100} \) and then evaluate \( f'(1) \). ### Step-by-Step Solution: 1. **Identify the function**: The function is given as: \[ f(x) = 1 - x + x^2 - x^3 + \ldots - x^{99} + x^{100} \] 2. **Recognize the series**: This is a finite series where the signs alternate. We can express it as: \[ f(x) = \sum_{n=0}^{100} (-1)^n x^n \] 3. **Differentiate the function**: To find \( f'(x) \), we differentiate term by term: \[ f'(x) = 0 - 1 + 2x - 3x^2 + 4x^3 - \ldots - 99x^{98} + 100x^{99} \] This can be simplified as: \[ f'(x) = -1 + 2x - 3x^2 + 4x^3 - \ldots - 99x^{98} + 100x^{99} \] 4. **Evaluate \( f'(1) \)**: Now, we substitute \( x = 1 \) into the derivative: \[ f'(1) = -1 + 2(1) - 3(1^2) + 4(1^3) - \ldots - 99(1^{98}) + 100(1^{99}) \] This simplifies to: \[ f'(1) = -1 + 2 - 3 + 4 - 5 + \ldots - 99 + 100 \] 5. **Group the terms**: We can group the terms into pairs: \[ (-1 + 2) + (-3 + 4) + \ldots + (-99 + 100) \] Each pair sums to 1, and since there are 100 terms, we have 50 pairs: \[ \text{Number of pairs} = \frac{100}{2} = 50 \] Therefore, the total sum is: \[ f'(1) = 50 \] ### Final Answer: Thus, \( f'(1) = 50 \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

If f(x)=1-x+x^2-x^3+...-x^(99)+x^(100) , then f^(prime)(1) equals a. 150 b. -50 c. -150 d. 50

If f(x)=1+x+(x^2)/2+...+(x^(100))/(100), then f^(prime)(1) is equal to a. 1/(100) b. 100 c. 50 d. 0

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x+4) = x^(2) - 1 , then f(x) is equal to

If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :