Home
Class 11
MATHS
If f(x)=((3x+1)(2sqrt(x)-1))/(sqrt(x)), ...

If `f(x)=((3x+1)(2sqrt(x)-1))/(sqrt(x))`, then `f'(1)` is equal to

A

5

B

`-5`

C

6

D

`(11)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(1) \) for the function \( f(x) = \frac{(3x + 1)(2\sqrt{x} - 1)}{\sqrt{x}} \), we will follow these steps: ### Step 1: Rewrite the function We start with the given function: \[ f(x) = \frac{(3x + 1)(2\sqrt{x} - 1)}{\sqrt{x}} \] We can rewrite this as: \[ f(x) = (3x + 1)(2\sqrt{x} - 1) \cdot x^{-1/2} \] ### Step 2: Differentiate the function We will use the product rule to differentiate \( f(x) \). The product rule states that if \( u(x) \) and \( v(x) \) are two functions, then: \[ (uv)' = u'v + uv' \] Let: \[ u(x) = (3x + 1)(2\sqrt{x} - 1) \quad \text{and} \quad v(x) = x^{-1/2} \] First, we need to find \( u'(x) \): \[ u(x) = (3x + 1)(2\sqrt{x} - 1) \] Using the product rule again on \( u(x) \): \[ u'(x) = (3)(2\sqrt{x} - 1) + (3x + 1)\left(\frac{d}{dx}(2\sqrt{x} - 1)\right) \] Now, differentiate \( 2\sqrt{x} - 1 \): \[ \frac{d}{dx}(2\sqrt{x}) = 2 \cdot \frac{1}{2} x^{-1/2} = x^{-1/2} \] So, \[ u'(x) = 3(2\sqrt{x} - 1) + (3x + 1)(x^{-1/2}) \] Next, we differentiate \( v(x) \): \[ v'(x) = -\frac{1}{2} x^{-3/2} \] Now we can apply the product rule: \[ f'(x) = u'(x)v(x) + u(x)v'(x) \] Substituting \( u(x) \), \( u'(x) \), \( v(x) \), and \( v'(x) \): \[ f'(x) = \left[3(2\sqrt{x} - 1) + (3x + 1)x^{-1/2}\right] x^{-1/2} + (3x + 1)(2\sqrt{x} - 1)\left(-\frac{1}{2} x^{-3/2}\right) \] ### Step 3: Evaluate \( f'(1) \) Now we will evaluate \( f'(1) \): 1. Calculate \( u(1) \): \[ u(1) = (3(1) + 1)(2\sqrt{1} - 1) = 4 \cdot 1 = 4 \] 2. Calculate \( u'(1) \): \[ u'(1) = 3(2(1) - 1) + (3(1) + 1)(1^{-1/2}) = 3(1) + 4 = 3 + 4 = 7 \] 3. Calculate \( v(1) \): \[ v(1) = 1^{-1/2} = 1 \] 4. Calculate \( v'(1) \): \[ v'(1) = -\frac{1}{2}(1^{-3/2}) = -\frac{1}{2} \] Now substitute these values into the derivative: \[ f'(1) = (7)(1) + (4)\left(-\frac{1}{2}\right) = 7 - 2 = 5 \] ### Final Answer Thus, \( f'(1) = 5 \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1).x then

f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx , then f(1) =

If f^(prime)(x)=1/(-x+sqrt(x^2+1)) and f(0)=(1+sqrt(2))/2 then f(1) is equal to- (a) log"(sqrt(2)+1) (b) 1 (c) 1+sqrt(2) (d) none of these

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If int((x+1))/sqrt(2x-1) dx= f(x) sqrt(2x-1)+C. Then f(x) is equal to (A) (x+4)/3 (B) (x+3)/4 (C) 2/3 (x+2) (D) x+4

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

let f(x)=sqrt(1+x^2) then

If f (x) = sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f (0) is equal to :

If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal to: