Home
Class 11
MATHS
If f(x)=(2-3cosx)/(sinx), then f'((pi)/(...

If `f(x)=(2-3cosx)/(sinx)`, then `f'((pi)/(4))` is equal to

A

`2sqrt(2)-6`

B

`6-2sqrt(2)`

C

`3-sqrt(2)`

D

`sqrt(2)-3`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'\left(\frac{\pi}{4}\right) \) for the function \( f(x) = \frac{2 - 3\cos x}{\sin x} \), we will follow these steps: ### Step 1: Find the derivative \( f'(x) \) Using the quotient rule, which states that if \( f(x) = \frac{g(x)}{h(x)} \), then \[ f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{[h(x)]^2} \] In our case, \( g(x) = 2 - 3\cos x \) and \( h(x) = \sin x \). #### Step 1.1: Calculate \( g'(x) \) and \( h'(x) \) - \( g'(x) = 0 + 3\sin x = 3\sin x \) (since the derivative of \( -3\cos x \) is \( 3\sin x \)) - \( h'(x) = \cos x \) #### Step 1.2: Apply the quotient rule Now substituting into the quotient rule: \[ f'(x) = \frac{(3\sin x)(\sin x) - (2 - 3\cos x)(\cos x)}{(\sin x)^2} \] ### Step 2: Simplify the expression Expanding the numerator: \[ f'(x) = \frac{3\sin^2 x - (2\cos x - 3\cos^2 x)}{\sin^2 x} \] This simplifies to: \[ f'(x) = \frac{3\sin^2 x + 3\cos^2 x - 2\cos x}{\sin^2 x} \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ f'(x) = \frac{3(1) - 2\cos x}{\sin^2 x} = \frac{3 - 2\cos x}{\sin^2 x} \] ### Step 3: Evaluate \( f'\left(\frac{\pi}{4}\right) \) Now we substitute \( x = \frac{\pi}{4} \): \[ f'\left(\frac{\pi}{4}\right) = \frac{3 - 2\cos\left(\frac{\pi}{4}\right)}{\sin^2\left(\frac{\pi}{4}\right)} \] Knowing that \( \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) and \( \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \): \[ f'\left(\frac{\pi}{4}\right) = \frac{3 - 2 \cdot \frac{1}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right)^2} \] Calculating \( \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \): \[ f'\left(\frac{\pi}{4}\right) = \frac{3 - \frac{2}{\sqrt{2}}}{\frac{1}{2}} = 2(3 - \frac{2}{\sqrt{2}}) \] ### Step 4: Simplify further \[ = 6 - 2\sqrt{2} \] Thus, the final answer is: \[ f'\left(\frac{\pi}{4}\right) = 6 - 2\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x)=|x|^(|sinx|) ,then f'((pi)/(4)) equals

Let f(x)=sinx,g(x)=2x" and "h(x)=cosx. If phi(x)=["go"(fh)](x)," then "phi''((pi)/(4)) is equal to

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If 3f(cosx)+2f(sinx)=5x , then f^(')(cosx) is equal to (where f^(') denotes derivative with respect to x ) (A) −1/(cosx) (B) 1/(cosx) (C) -1/(sinx) (D) 1/(sinx)

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x)=10cosx+(13+2x)sinx then f''(x)+f(x)=

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)