Home
Class 11
MATHS
If y=sqrt(x)+(1)/(sqrt(x)), then (dy)/(d...

If `y=sqrt(x)+(1)/(sqrt(x))`, then `(dy)/(dx)` at `x=1` is

A

1

B

`1/2`

C

`1/(sqrt(2))`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \sqrt{x} + \frac{1}{\sqrt{x}}\) at \(x = 1\), we will follow these steps: ### Step 1: Differentiate \(y\) Given: \[ y = \sqrt{x} + \frac{1}{\sqrt{x}} \] We need to differentiate \(y\) with respect to \(x\). The derivative of \(\sqrt{x}\) is: \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \] The derivative of \(\frac{1}{\sqrt{x}}\) can be rewritten as \(x^{-1/2}\): \[ \frac{d}{dx}\left(\frac{1}{\sqrt{x}}\right) = \frac{d}{dx}(x^{-1/2}) = -\frac{1}{2}x^{-3/2} = -\frac{1}{2\sqrt{x^3}} \] Combining these, we have: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{x}} - \frac{1}{2\sqrt{x^3}} \] ### Step 2: Simplify \(\frac{dy}{dx}\) We can factor out \(\frac{1}{2}\): \[ \frac{dy}{dx} = \frac{1}{2}\left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x^3}}\right) \] ### Step 3: Substitute \(x = 1\) Now, we will evaluate \(\frac{dy}{dx}\) at \(x = 1\): \[ \frac{dy}{dx}\bigg|_{x=1} = \frac{1}{2}\left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{1^3}}\right) \] Calculating the terms: \[ \frac{1}{\sqrt{1}} = 1 \quad \text{and} \quad \frac{1}{\sqrt{1^3}} = 1 \] Thus, \[ \frac{dy}{dx}\bigg|_{x=1} = \frac{1}{2}(1 - 1) = \frac{1}{2}(0) = 0 \] ### Final Answer Therefore, \(\frac{dy}{dx}\) at \(x = 1\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

If y=e^(sqrt(x))+e^(-sqrt(x))," then "(dy)/(dx) is equal to

If y=sin sqrt(x)*cos sqrt(x) ,then dy/dx=

If y=sqrt((1-x)/(1+x) then (dy)/(dx) equals

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If sqrt(x/y)+sqrt(y/x)=1 , then dy/dx

If y=cos^(-1)((sqrt(x)-1)/(sqrt(x)+1))+cosec^(-1)((sqrt(x)+1)/(sqrt(x)-1)) , then (dy)/(dx) is equal to

If x=sqrt(1-y^2) , then (dy)/(dx)=

If y=sqrt(x)+1/(sqrt(x)),p rov et h a t2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is: