Home
Class 11
MATHS
If y=(1+(1)/(x^(2)))/(1-(1)/(x^(2))), th...

If `y=(1+(1)/(x^(2)))/(1-(1)/(x^(2)))`, then `(dy)/(dx)` is

A

A. `-(4x)/((x^(2)-1)^(2))`

B

B. `-(4x)/(x^(2)-1)`

C

C. `(1-x^(2))/(4x)`

D

D. `(4x)/(x^(2)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function given by \[ y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}, \] we can follow these steps: ### Step 1: Simplify the function First, we simplify the expression for \( y \): \[ y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}. \] To simplify, we can combine the terms in the numerator and the denominator: \[ y = \frac{\frac{x^2 + 1}{x^2}}{\frac{x^2 - 1}{x^2}} = \frac{x^2 + 1}{x^2 - 1}. \] ### Step 2: Differentiate using the quotient rule Now, we will differentiate \( y \) using the quotient rule. The quotient rule states that if \( y = \frac{u}{v} \), then \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}, \] where \( u = x^2 + 1 \) and \( v = x^2 - 1 \). ### Step 3: Find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) Now we calculate the derivatives of \( u \) and \( v \): \[ \frac{du}{dx} = \frac{d}{dx}(x^2 + 1) = 2x, \] \[ \frac{dv}{dx} = \frac{d}{dx}(x^2 - 1) = 2x. \] ### Step 4: Apply the quotient rule Now substituting \( u, v, \frac{du}{dx}, \) and \( \frac{dv}{dx} \) into the quotient rule formula: \[ \frac{dy}{dx} = \frac{(x^2 - 1)(2x) - (x^2 + 1)(2x)}{(x^2 - 1)^2}. \] ### Step 5: Simplify the expression Now, we simplify the numerator: \[ = \frac{2x(x^2 - 1) - 2x(x^2 + 1)}{(x^2 - 1)^2} \] \[ = \frac{2x(x^2 - 1 - x^2 - 1)}{(x^2 - 1)^2} \] \[ = \frac{2x(-2)}{(x^2 - 1)^2} = \frac{-4x}{(x^2 - 1)^2}. \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is \[ \frac{dy}{dx} = \frac{-4x}{(x^2 - 1)^2}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    ICSE|Exercise Multiple Choice Questions |31 Videos
  • LIMITS

    ICSE|Exercise CHAPTER TEST |10 Videos
  • LINEAR INEQUALITIES

    ICSE|Exercise MULTIPLE CHOICE QUESTION|16 Videos

Similar Questions

Explore conceptually related problems

If y=(1+1/(x^2))/(1-1/(x^2)) , then (dy)/(dx) = a. -(4x)/((x^2-1)^2) b. -(4x)/(x^2-1) c. (1-x^2)/(4x) d. (4x)/(x^2-1)

If y=log((1-x^(2))/(1+x^(2))),|x|lt1 , then (dy)/(dx) =

8.If .If y=x^(2)+(1)/(x^(2)+(1)/(x^(2)+x^(2)+...) ,then (dy)/(dx) is equal to

If x=sqrt(1-y^2) , then (dy)/(dx)=

If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1 then (dy)/(dx) may be equals to

If y= "tan"^(-1) (2x)/(1-x^(2)) , prove that (dy)/(dx)= (2)/(1 + x^(2))

If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

If y=[(x^2+1)/(x+1)] , then find (dy)/(dx) .

If y= tan ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, then (dy)/(dx) at ((1)/(2)) is:

If y=(x^(2))/((x+1))"then"(dy)/(dx)"is":-