Home
Class 12
MATHS
The value of the determinant Delta=|{: ...

The value of the determinant `Delta=|{: ( sin^(2)23^(@)" "sin^(2)67^(@)" "cos180^(@)),(-sin^(2)67^(@)" "-sin^(2)23^(@)" "-cos180^(@)),(cos180^(@)" "sin^(2)23^(@)" "sin^(2)67^(@)):}|` is

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} \sin^2 23^\circ & \sin^2 67^\circ & \cos 180^\circ \\ -\sin^2 67^\circ & -\sin^2 23^\circ & -\cos 180^\circ \\ \cos 180^\circ & \sin^2 23^\circ & \sin^2 67^\circ \end{vmatrix} \] we will follow these steps: ### Step 1: Simplify the trigonometric values We know that: - \(\cos 180^\circ = -1\) - \(\sin^2 67^\circ = \cos^2 23^\circ\) (using the identity \(\sin(90^\circ - \theta) = \cos \theta\)) Thus, we can rewrite the determinant as: \[ \Delta = \begin{vmatrix} \sin^2 23^\circ & \cos^2 23^\circ & -1 \\ -\cos^2 23^\circ & -\sin^2 23^\circ & 1 \\ -1 & \sin^2 23^\circ & \cos^2 23^\circ \end{vmatrix} \] ### Step 2: Perform column operations We will perform the operation \(C_1 \to C_1 + C_2\): \[ C_1 = \begin{pmatrix} \sin^2 23^\circ + \cos^2 23^\circ \\ -\cos^2 23^\circ - \sin^2 23^\circ \\ -1 + \sin^2 23^\circ \end{pmatrix} \] Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\), we have: \[ C_1 = \begin{pmatrix} 1 \\ -1 \\ \sin^2 23^\circ - 1 \end{pmatrix} \] Thus, the determinant becomes: \[ \Delta = \begin{vmatrix} 1 & \cos^2 23^\circ & -1 \\ -1 & -\sin^2 23^\circ & 1 \\ \sin^2 23^\circ - 1 & \cos^2 23^\circ & \cos^2 23^\circ \end{vmatrix} \] ### Step 3: Further simplify the determinant Now, we can see that the second row can be simplified. We can also perform the operation \(C_1 \to C_1 + C_3\): \[ C_1 = \begin{pmatrix} 1 + (-1) \\ -1 + 1 \\ (\sin^2 23^\circ - 1) + \cos^2 23^\circ \end{pmatrix} \] This results in: \[ C_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \] ### Step 4: Evaluate the determinant Since one entire column of the determinant is now zero, we can conclude that the value of the determinant is: \[ \Delta = 0 \] ### Final Answer The value of the determinant is \(0\). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of (cos^(2)66^(@)-sin^(2)6^(@))(cos^(2)48^(@)-sin^(2)12^(@)) .

Prove that cos^(4)A-sin^(4)A=cos^(2)A-sin^(2)A .

State True or False: The value of the expression (cos^(2)23^(@)-sin^(2)67^(@)) is positive.

The value of (sin22^(@)cos8^(@)+cos158^(@)cos98^(@))/(sin23^(@)cos7^(@)+cos157^(@)cos97^(@))

Evaluate: ((cos 47^(@))/(sin 43^(@)))^(2)+((sin72^(2))/(cos 18^(@)))^(2)-2cos^(2)45^(@)

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

sin (67(1)/2)^(@)+cos(67(1)/2)^(@) is equal to

sin 67(1)/(2)^(@)+cos67(1)/(2)^(@) is equal to

Find the value of [(sin^2 2 2^(@)+sin^2 6 8^(@))/(cos^2 2 2^(@)+cos^2 6 8^(@))+sin^2 6 3^(@)+cos6 3^(@)sin2 7^(@)]

Prove the following identities : (cos A + sin A)^(2) + (cos A - sin A)^(2) = 2

ICSE-DETERMINANTS -Multiple Choice Questions
  1. The value of the determinant Delta=|{: ( sin^(2)23^(@)" "si...

    Text Solution

    |

  2. If A=[a(ij)] is a square matrix of order 3 and A(ij) denote cofactor o...

    Text Solution

    |

  3. The value of a determinants unaltered if

    Text Solution

    |

  4. If A is square matrix of order 3, then which of the following is not t...

    Text Solution

    |

  5. The value of |{:(a+pd,a+qd,a+rd),(p,q,r),(d,d,d):}| is

    Text Solution

    |

  6. The value of |{:(2^(2),2^(3),2^(4)),(2^(3),2^(4),2^(5)),(2^(4),2^(5),2...

    Text Solution

    |

  7. If |(3x,4),(5,x)|=|(4,-3),(5,-2)|, then x =

    Text Solution

    |

  8. The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

    Text Solution

    |

  9. The value of |{:(a,a+2b,a+4b),(a+2b,a+4b,a+6b),(a+4b,a+6b,a+8b):}| is

    Text Solution

    |

  10. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  11. The minimum value of |{:(1,1,1),(1,1+sinx,1),(1,1,1+cosx):}| is

    Text Solution

    |

  12. The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

    Text Solution

    |

  13. If [(1,3,9),(1,x,x^(2)),(4,6,9)] is singular matrix then x =

    Text Solution

    |

  14. If x+y+z=pi then the value of |{:(sin(x+y+z),sin(x+z),cosy),(-siny,0,t...

    Text Solution

    |

  15. The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

    Text Solution

    |

  16. If Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta(2...

    Text Solution

    |

  17. If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1,0):}|=0, then

    Text Solution

    |

  18. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(3)-1),(b,b^(2),b...

    Text Solution

    |

  19. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(4)-1),(b,b^(2)...

    Text Solution

    |

  20. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  21. If A is a non - singular matrix then

    Text Solution

    |