Home
Class 12
MATHS
If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,...

If `f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}|`, then

A

`f(a)=0`

B

`f(b)=0`

C

`f(c )=0`

D

`f(0)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant \( f(x) = \left| \begin{array}{ccc} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{array} \right| \). ### Step 1: Write the determinant We start with the determinant: \[ f(x) = \left| \begin{array}{ccc} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{array} \right| \] ### Step 2: Expand the determinant Using the determinant expansion formula, we can expand this determinant. The first row has a zero, so we can simplify our calculations: \[ f(x) = 0 \cdot \text{(minor)} - (x-a) \cdot \left| \begin{array}{cc} x+a & x-c \\ x+b & 0 \end{array} \right| + (x-b) \cdot \left| \begin{array}{cc} x+a & 0 \\ x+b & x+c \end{array} \right| \] ### Step 3: Calculate the 2x2 determinants Now we need to calculate the two 2x2 determinants: 1. For the first determinant: \[ \left| \begin{array}{cc} x+a & x-c \\ x+b & 0 \end{array} \right| = (x+a)(0) - (x-c)(x+b) = -(x-c)(x+b) = - (x^2 + (b-c)x + bc) \] 2. For the second determinant: \[ \left| \begin{array}{cc} x+a & 0 \\ x+b & x+c \end{array} \right| = (x+a)(x+c) - (0)(x+b) = (x+a)(x+c) = x^2 + (a+c)x + ac \] ### Step 4: Substitute back into the determinant Substituting these results back into the expression for \( f(x) \): \[ f(x) = - (x-a)(-(x^2 + (b-c)x + bc)) + (x-b)(x^2 + (a+c)x + ac) \] \[ = (x-a)(x^2 + (b-c)x + bc) + (x-b)(x^2 + (a+c)x + ac) \] ### Step 5: Simplify the expression Now we expand both terms: 1. For the first term: \[ (x-a)(x^2 + (b-c)x + bc) = x^3 + (b-c)x^2 + bcx - ax^2 - a(b-c)x - abc \] 2. For the second term: \[ (x-b)(x^2 + (a+c)x + ac) = x^3 + (a+c)x^2 + acx - bx^2 - b(a+c)x - bac \] ### Step 6: Combine and simplify Combining all terms, we will collect like terms. The final expression will be: \[ f(x) = A \cdot x^3 + B \cdot x^2 + C \cdot x + D \] Where \( A, B, C, D \) are coefficients that depend on \( a, b, c \). ### Step 7: Evaluate \( f(x) \) at specific points Now we evaluate \( f(x) \) at \( x = a, b, c, 0 \): - \( f(a) = 0 \) - \( f(b) = 0 \) - \( f(c) = 0 \) - \( f(0) = abc \) ### Conclusion The final result shows that \( f(a), f(b), f(c) \) are not equal to zero, while \( f(0) \) is equal to \( abc \). Thus, the correct option is determined based on these evaluations.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|[0,x-a, x-b], [x+a,0,x-c], [x+b, x+c,0]|,t h e n (a) f(a)=0 (b) f(b)=0 (c) f(0)=0 (d) f(1)=0

If f(x)=|0x-a x-b x+a0x-c x+b x+c0|,t h e n f(x)=0 (b) f(b)=0 (c) f(0)=0 f(1)=0

Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-c],[ x+b, x+c,0]|=0,a!=b!=c and b(a+c)> a c

Use properties of determinants to solve for x: |{:(,x+a,b,c),(,c,x+b,a),(,a,b,x+c):}|=0 and x=0

If a ne b ne c , then solution of equation |{:(x-a,x-b,x-c),(x-b,x-c,x-a),(x-c, x-a,x-b):}|=0" "is:

Let f(x) ={{:( xe^(x), xle0),( x+x^(2)-x^(3), xgt0):} then the correct statement is (a) f is continuous and differentiable for all x (b) f is continuous but not differentiable at x=0 (c) f is continuous and differentiable for all x . (d) f ' is continuous but not differentiable at x=0

If a ,b ,c are different, then the value of |[0,x^2-a, x^3-b],[ x^2+a,0,x^2+c],[ x^4+b, x-c,0]| is a. c b. a c. b d. 0

If f(x)={[1/(x^2)-1/(x^2),xlt0],[sin^(-1)(x+b),x gt-0]} then at x=0,f(x) is (a)continuous if b=0 (b)discontinuous for any real b (c)differentiable for b=+-1 (d)non-differentiable for any real b

If a ,b ,c are different, then the value of |[0,x^2-a, x^3-b], [x^2+a,0,x^2+c], [x^4+b, x-c,0]| is a. b b. c c. b d. 0

if f(x)={{:(2+x,xge0),(2-x,xlt0):} then lim_(x to 0) f(f(x)) is equal to (A) 0 (B) 4 (C) 2 (D) does not exist

ICSE-DETERMINANTS -Multiple Choice Questions
  1. If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}|, then

    Text Solution

    |

  2. If A=[a(ij)] is a square matrix of order 3 and A(ij) denote cofactor o...

    Text Solution

    |

  3. The value of a determinants unaltered if

    Text Solution

    |

  4. If A is square matrix of order 3, then which of the following is not t...

    Text Solution

    |

  5. The value of |{:(a+pd,a+qd,a+rd),(p,q,r),(d,d,d):}| is

    Text Solution

    |

  6. The value of |{:(2^(2),2^(3),2^(4)),(2^(3),2^(4),2^(5)),(2^(4),2^(5),2...

    Text Solution

    |

  7. If |(3x,4),(5,x)|=|(4,-3),(5,-2)|, then x =

    Text Solution

    |

  8. The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

    Text Solution

    |

  9. The value of |{:(a,a+2b,a+4b),(a+2b,a+4b,a+6b),(a+4b,a+6b,a+8b):}| is

    Text Solution

    |

  10. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  11. The minimum value of |{:(1,1,1),(1,1+sinx,1),(1,1,1+cosx):}| is

    Text Solution

    |

  12. The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

    Text Solution

    |

  13. If [(1,3,9),(1,x,x^(2)),(4,6,9)] is singular matrix then x =

    Text Solution

    |

  14. If x+y+z=pi then the value of |{:(sin(x+y+z),sin(x+z),cosy),(-siny,0,t...

    Text Solution

    |

  15. The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

    Text Solution

    |

  16. If Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta(2...

    Text Solution

    |

  17. If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1,0):}|=0, then

    Text Solution

    |

  18. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(3)-1),(b,b^(2),b...

    Text Solution

    |

  19. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(4)-1),(b,b^(2)...

    Text Solution

    |

  20. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  21. If A is a non - singular matrix then

    Text Solution

    |