Home
Class 12
MATHS
If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1...

If `abc!=0` then `|{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}|` is

A

`-1`

B

1

C

abc

D

`a^(-1)b^(-1)c^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( | \begin{pmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{pmatrix} | \), we will follow these steps: ### Step 1: Write down the determinant We start with the determinant: \[ D = \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} \] ### Step 2: Expand the determinant using the first row Using the first row to expand the determinant, we have: \[ D = (1+a) \begin{vmatrix} 1+b & 1 \\ 1 & 1+c \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & 1+c \end{vmatrix} + 1 \begin{vmatrix} 1 & 1+b \\ 1 & 1 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now, we calculate the 2x2 determinants: 1. For \( \begin{vmatrix} 1+b & 1 \\ 1 & 1+c \end{vmatrix} \): \[ = (1+b)(1+c) - 1 \cdot 1 = 1 + b + c + bc - 1 = b + c + bc \] 2. For \( \begin{vmatrix} 1 & 1 \\ 1 & 1+c \end{vmatrix} \): \[ = 1(1+c) - 1 \cdot 1 = 1 + c - 1 = c \] 3. For \( \begin{vmatrix} 1 & 1+b \\ 1 & 1 \end{vmatrix} \): \[ = 1 \cdot 1 - 1(1+b) = 1 - (1+b) = -b \] ### Step 4: Substitute back into the determinant Substituting these results back into the expression for \( D \): \[ D = (1+a)(b+c+bc) - c - b \] ### Step 5: Expand and simplify Now we expand \( D \): \[ D = (1+a)(b+c+bc) - c - b = (b+c+bc) + a(b+c+bc) - c - b \] \[ = b + c + bc + ab + ac + abc - c - b \] The \( b \) and \( c \) terms cancel out: \[ D = ab + ac + abc \] ### Step 6: Factor out \( abc \) Now we can factor out \( abc \): \[ D = abc \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 \right) \] ### Final Result Thus, the final result for the determinant is: \[ D = abc \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 \right) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos

Similar Questions

Explore conceptually related problems

If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0 , then Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to

if the value of the determinant |{:(a,,1,,1),(1,,b,,1),(1,,1,,c):}| is positivie then (a,b,c lt 0)

If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| = 0 , then the value of (1)/(a) + (1)/(b) + (1)/(c) is

Prove that |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| =abc (1+(1)/(a)+(1)/(b)+(1)/(c))

If ane0, bne0,cne0 " "and " |{:(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c):}| =0 the value of |a^(-1)+b^(-1)+c^(-1)| is equal to

The value of the determinant |(1+a, 1, 1),(1, 1+a, 1),(1, 1, 1+a)| is zero if (A) a=-3 (B) a=0 (C) a=2 (D) a=1

If a,b,c and d are the roots of the equation x^(4)+2x^(3)+4x^(2)+8x+16=0 the value of the determinant |{:(1+a,1,1,1),(1,1+b,1,1),(1,1,1+c,1),(1,1,1,1+d):}| is

If a ,\ b ,\ c are the roots of the equation x^3+p x+q=0 , then find the value of the determinant |(1+a,1 ,1), (1, 1+b,1),( 1, 1 ,1+c)| .

If a^(-1)+b^(-1)+c^(-1)=0 such that |{:(1+a," "1," "1),(" "1,1+b," "1),(" "1," "1,1+c):}|=lambda , then what is lambda equal to ?

Show that 1+(1)/(a)+(1)/(b)+(1)/(c ) is a factor of |(1+a, 1, 1),(1, 1+b, 1),(1,1,1+c)| .

ICSE-DETERMINANTS -Multiple Choice Questions
  1. The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

    Text Solution

    |

  2. The value of |{:(a,a+2b,a+4b),(a+2b,a+4b,a+6b),(a+4b,a+6b,a+8b):}| is

    Text Solution

    |

  3. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  4. The minimum value of |{:(1,1,1),(1,1+sinx,1),(1,1,1+cosx):}| is

    Text Solution

    |

  5. The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

    Text Solution

    |

  6. If [(1,3,9),(1,x,x^(2)),(4,6,9)] is singular matrix then x =

    Text Solution

    |

  7. If x+y+z=pi then the value of |{:(sin(x+y+z),sin(x+z),cosy),(-siny,0,t...

    Text Solution

    |

  8. The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

    Text Solution

    |

  9. If Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta(2...

    Text Solution

    |

  10. If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1,0):}|=0, then

    Text Solution

    |

  11. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(3)-1),(b,b^(2),b...

    Text Solution

    |

  12. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(4)-1),(b,b^(2)...

    Text Solution

    |

  13. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  14. If A is a non - singular matrix then

    Text Solution

    |

  15. If A is a non - singular matrix of order 3, then which of the followin...

    Text Solution

    |

  16. If A, B are two non-singular matrices of same order, then

    Text Solution

    |

  17. If for matrix A, A^(3)=I then A^(-1)=

    Text Solution

    |

  18. If A,B,C are non - singular matrices of same order then (AB^(-1)C)^(-1...

    Text Solution

    |

  19. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)], then the value of x is

    Text Solution

    |

  20. If A is a square matrix of order 3 such that A("adj A")=[(-3,0,0),(0,-...

    Text Solution

    |