Home
Class 12
MATHS
The value of |{:(1+a,b,c),(a,1+b,c),(a,b...

The value of `|{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}|` is

A

abc

B

`a+b+c`

C

`1+a+b+c`

D

`3+abc`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1 + a & b & c \\ a & 1 + b & c \\ a & b & 1 + c \end{vmatrix} \] we will perform row operations to simplify the determinant. ### Step 1: Apply Row Operations We will perform the following row operations: 1. \( R_2 \to R_2 - R_1 \) 2. \( R_3 \to R_3 - R_1 \) This will help us simplify the determinant. ### Step 2: Calculate the New Rows After performing the operations: - For \( R_2 \): \[ R_2 = (a - (1 + a), (1 + b) - b, c - c) = (0, 1, 0) \] - For \( R_3 \): \[ R_3 = (a - (1 + a), b - b, (1 + c) - c) = (0, 0, 1) \] So now, the determinant becomes: \[ D = \begin{vmatrix} 1 + a & b & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \] ### Step 3: Calculate the Determinant Now, we can calculate the determinant using the property of determinants: \[ D = (1 + a) \cdot \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} - b \cdot \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} + c \cdot \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} \] The determinant of the \(2 \times 2\) identity matrix is \(1\), and the other two determinants are \(0\): \[ D = (1 + a) \cdot 1 - b \cdot 0 + c \cdot 0 = 1 + a \] ### Step 4: Final Result Thus, we have: \[ D = 1 + a + b + c \] ### Conclusion The value of the determinant is: \[ \boxed{1 + a + b + c} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are in G.P. then the value of |(a,b,a+b),(b,c,b+c),(a+b,b+c,0)|= (A) 1 (B) -1 (C) a+b+c (D) 0

The value of Delta = |(1,a,b +c),(1,b,c +a),(1,c,a +b)| , is

Prove that : |{:(a+b,b+c,c+a),(c,a,b),(1,1,1):}|

The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

if the value of the determinant |{:(a,,1,,1),(1,,b,,1),(1,,1,,c):}| is positivie then (a,b,c lt 0)

If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| = 0 , then the value of (1)/(a) + (1)/(b) + (1)/(c) is

If a b c=0 , then find the value of {(x^a)^b}^c (a)1 (b) a (c)b (d) c

Value of |(1,a,a^2),(1,b,b^2),(1,c,c^2)| is (A) (a-b)(b-c)(c-a) (B) (a^2-b^2)(b^2-c^2)(c^2-a^2) (C) (a-b+c)(b-c+a)(c+a-b) (D) none of these

If f(a,b) =(f(b)-f(a))/(b-a) and f(a,b,c)=(f(b,c)-f(a,b))/(c-a) prove that f(a,b,c)=|{:(f(a),f(b),f(c)),(1,1,1),(a,b,c):}|-:|{:(1,1,1),(a,b,c),(a^(2),b^(2),c^(2)):}| .

The value of the determinant |{:(1,bc,a(b+c)),(1,ca,b(a+c)),(1, ab,c(a+b)):}| doesn't depend on

ICSE-DETERMINANTS -Multiple Choice Questions
  1. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  2. The minimum value of |{:(1,1,1),(1,1+sinx,1),(1,1,1+cosx):}| is

    Text Solution

    |

  3. The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

    Text Solution

    |

  4. If [(1,3,9),(1,x,x^(2)),(4,6,9)] is singular matrix then x =

    Text Solution

    |

  5. If x+y+z=pi then the value of |{:(sin(x+y+z),sin(x+z),cosy),(-siny,0,t...

    Text Solution

    |

  6. The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

    Text Solution

    |

  7. If Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta(2...

    Text Solution

    |

  8. If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1,0):}|=0, then

    Text Solution

    |

  9. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(3)-1),(b,b^(2),b...

    Text Solution

    |

  10. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(4)-1),(b,b^(2)...

    Text Solution

    |

  11. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  12. If A is a non - singular matrix then

    Text Solution

    |

  13. If A is a non - singular matrix of order 3, then which of the followin...

    Text Solution

    |

  14. If A, B are two non-singular matrices of same order, then

    Text Solution

    |

  15. If for matrix A, A^(3)=I then A^(-1)=

    Text Solution

    |

  16. If A,B,C are non - singular matrices of same order then (AB^(-1)C)^(-1...

    Text Solution

    |

  17. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)], then the value of x is

    Text Solution

    |

  18. If A is a square matrix of order 3 such that A("adj A")=[(-3,0,0),(0,-...

    Text Solution

    |

  19. If A is a square matrix of order 3 such that A (adj A) =[(-2,0,0),(0,-...

    Text Solution

    |

  20. If A=[(a,0,0),(0,a,0),(0,0,a)],a!=0 then | adj A| is equal to

    Text Solution

    |