Home
Class 12
MATHS
If [(1,3,9),(1,x,x^(2)),(4,6,9)] is sing...

If `[(1,3,9),(1,x,x^(2)),(4,6,9)]` is singular matrix then x =

A

A) 3

B

B) 3 or 6

C

C) 3 or `(3)/(2)`

D

D) `-3,(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( x \) for which the matrix \[ \begin{pmatrix} 1 & 3 & 9 \\ 1 & x & x^2 \\ 4 & 6 & 9 \end{pmatrix} \] is singular, we need to find when its determinant is equal to zero. ### Step 1: Calculate the Determinant The determinant of a \( 3 \times 3 \) matrix \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] is given by the formula: \[ \text{det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix, we have: \[ a = 1, b = 3, c = 9, d = 1, e = x, f = x^2, g = 4, h = 6, i = 9 \] Substituting these values into the determinant formula: \[ \text{det} = 1 \cdot (x \cdot 9 - x^2 \cdot 6) - 3 \cdot (1 \cdot 9 - x^2 \cdot 4) + 9 \cdot (1 \cdot 6 - x \cdot 4) \] ### Step 2: Simplify the Determinant Now, let's simplify each term: 1. First term: \[ 1 \cdot (9x - 6x^2) = 9x - 6x^2 \] 2. Second term: \[ -3 \cdot (9 - 4x^2) = -27 + 12x^2 \] 3. Third term: \[ 9 \cdot (6 - 4x) = 54 - 36x \] Combining these, we have: \[ \text{det} = (9x - 6x^2) + (12x^2 - 27) + (54 - 36x) \] ### Step 3: Combine Like Terms Now, let's combine like terms: \[ \text{det} = -6x^2 + 12x^2 + 9x - 36x + 54 - 27 \] This simplifies to: \[ \text{det} = 6x^2 - 27x + 27 \] ### Step 4: Set the Determinant to Zero For the matrix to be singular, we set the determinant equal to zero: \[ 6x^2 - 27x + 27 = 0 \] ### Step 5: Simplify the Quadratic Equation Dividing the entire equation by 3: \[ 2x^2 - 9x + 9 = 0 \] ### Step 6: Factor the Quadratic Now, we will factor the quadratic: \[ 2x^2 - 6x - 3x + 9 = 0 \] Grouping gives us: \[ 2x(x - 3) - 3(x - 3) = 0 \] Factoring out \( (x - 3) \): \[ (2x - 3)(x - 3) = 0 \] ### Step 7: Solve for \( x \) Setting each factor to zero gives: 1. \( 2x - 3 = 0 \) implies \( x = \frac{3}{2} \) 2. \( x - 3 = 0 \) implies \( x = 3 \) Thus, the values of \( x \) for which the matrix is singular are: \[ x = 3 \quad \text{or} \quad x = \frac{3}{2} \] ### Final Answer The values of \( x \) are \( 3 \) and \( \frac{3}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos

Similar Questions

Explore conceptually related problems

If [(2+x,3,4),(1,-1,2),(x,1,-5)] is a singular matrix then x is (A) 13/25 (B) -25/13 (C) 5/13 (D) 25/13

Find the value of x for which the matrix A=[(2//x,-1,2),(1,x,2x^(2)),(1,1//x,2)] is singular.

Determine the values of x for which the matrix A= [(x+1,-3 ,4),(-5,x+2, 2) ,(4 ,1,x-6)] is singular.

The matrix [(5 ,1 ,0), (3 ,-2 ,-4 ), (6 ,-1 ,-2b)] is a singular matrix, if the value of b is ?

find the real value of x for which the matrix =[(x+1,3,5),(1,x+3,5),(1,3,x+5)] is non-singular.

Find the values of x for which matrix [(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)] is singular.

For what value of x, the given matrix A= [(3-2x,x+1),(2,4)] is a singular matrix?

The number of values of x for which the matrix A=[(3-x,2,2),(2,4-x,1),(-2,-4,-1-x)] is singular, is

For what value of x, matrix [[6-x,4],[3-x,1]] is a singular matrix ? A) 1 B) 2 C) -1 D) -2

ICSE-DETERMINANTS -Multiple Choice Questions
  1. The minimum value of |{:(1,1,1),(1,1+sinx,1),(1,1,1+cosx):}| is

    Text Solution

    |

  2. The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

    Text Solution

    |

  3. If [(1,3,9),(1,x,x^(2)),(4,6,9)] is singular matrix then x =

    Text Solution

    |

  4. If x+y+z=pi then the value of |{:(sin(x+y+z),sin(x+z),cosy),(-siny,0,t...

    Text Solution

    |

  5. The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

    Text Solution

    |

  6. If Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta(2...

    Text Solution

    |

  7. If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1,0):}|=0, then

    Text Solution

    |

  8. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(3)-1),(b,b^(2),b...

    Text Solution

    |

  9. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(4)-1),(b,b^(2)...

    Text Solution

    |

  10. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  11. If A is a non - singular matrix then

    Text Solution

    |

  12. If A is a non - singular matrix of order 3, then which of the followin...

    Text Solution

    |

  13. If A, B are two non-singular matrices of same order, then

    Text Solution

    |

  14. If for matrix A, A^(3)=I then A^(-1)=

    Text Solution

    |

  15. If A,B,C are non - singular matrices of same order then (AB^(-1)C)^(-1...

    Text Solution

    |

  16. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)], then the value of x is

    Text Solution

    |

  17. If A is a square matrix of order 3 such that A("adj A")=[(-3,0,0),(0,-...

    Text Solution

    |

  18. If A is a square matrix of order 3 such that A (adj A) =[(-2,0,0),(0,-...

    Text Solution

    |

  19. If A=[(a,0,0),(0,a,0),(0,0,a)],a!=0 then | adj A| is equal to

    Text Solution

    |

  20. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |