Home
Class 12
MATHS
If x+y+z=pi then the value of |{:(sin(x+...

If `x+y+z=pi` then the value of `|{:(sin(x+y+z),sin(x+z),cosy),(-siny,0,tanx),(cos(x+z),tan(y+z),0):}|` is

A

0

B

1

C

`-1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given the condition \( x + y + z = \pi \), we will follow these steps: ### Step 1: Substitute \( x + y + z \) with \( \pi \) Given the equation \( x + y + z = \pi \), we can substitute this into the determinant. The determinant we need to evaluate is: \[ D = \begin{vmatrix} \sin(x+y+z) & \sin(x+z) & \cos y \\ -\sin y & 0 & \tan x \\ \cos(x+z) & \tan(y+z) & 0 \end{vmatrix} \] ### Step 2: Evaluate \( \sin(x+y+z) \) Since \( x + y + z = \pi \): \[ \sin(x+y+z) = \sin(\pi) = 0 \] ### Step 3: Evaluate \( \sin(x+z) \) and \( \cos(x+z) \) We can express \( \sin(x+z) \) and \( \cos(x+z) \) using the identity: \[ \sin(x+z) = \sin(\pi - y) = \sin y \] \[ \cos(x+z) = \cos(\pi - y) = -\cos y \] ### Step 4: Evaluate \( \tan(y+z) \) Similarly, we can express \( \tan(y+z) \): \[ \tan(y+z) = \tan(\pi - x) = -\tan x \] ### Step 5: Substitute these values into the determinant Now we substitute these values into the determinant: \[ D = \begin{vmatrix} 0 & \sin y & \cos y \\ -\sin y & 0 & \tan x \\ -\cos y & -\tan x & 0 \end{vmatrix} \] ### Step 6: Expand the determinant Using the determinant expansion formula, we can expand \( D \): \[ D = 0 \cdot \begin{vmatrix} 0 & \tan x \\ -\tan x & 0 \end{vmatrix} - \sin y \cdot \begin{vmatrix} -\sin y & \tan x \\ -\cos y & 0 \end{vmatrix} + \cos y \cdot \begin{vmatrix} -\sin y & 0 \\ -\cos y & -\tan x \end{vmatrix} \] ### Step 7: Calculate the 2x2 determinants Calculating the first 2x2 determinant: \[ \begin{vmatrix} -\sin y & \tan x \\ -\cos y & 0 \end{vmatrix} = (-\sin y)(0) - (-\cos y)(\tan x) = \cos y \tan x \] Calculating the second 2x2 determinant: \[ \begin{vmatrix} -\sin y & 0 \\ -\cos y & -\tan x \end{vmatrix} = (-\sin y)(-\tan x) - (0)(-\cos y) = \sin y \tan x \] ### Step 8: Substitute back into the determinant Now substituting back into \( D \): \[ D = 0 - \sin y (\cos y \tan x) + \cos y (\sin y \tan x) \] ### Step 9: Simplify This simplifies to: \[ D = -\sin y \cos y \tan x + \cos y \sin y \tan x = 0 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos

Similar Questions

Explore conceptually related problems

If x y z=0, then find the value of (a^x)^(y z)+(a^y)^(z x)+(a^z)^(x y)= (a)3 (b) 2 (c)1 (d) 0

If x+y+z=pi/2, then prove that |[sinx,siny,sinz],[cosx,cosy,cosz],[cos^3x,cos^3 y,cos^3z]|=0

The value of sinx siny sin(x-y)+sinysinz sin(y-z) +sinz sinx sin(z-x)+sin(x-y)sin(y-z)sin(z-x), is

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

If A = {x, y, z}, then the relation R={(x,x),(y,y),(z,z),(z,x),(z,y)} , is

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If x+y+z= pi/2 , prove that : cos(x-y-z) + cos(y-z-x) + cos (z-x-y)-4cosx cosy cosz=0

" if " |{:(sin x,,sin y,,sin z),(cos x,,cos y,,cos z),(cos^(3) x,,cos^(3)y,,cos^(3)z):}|=0 then which of the following is // are possible ?

If [(x y,4),(z+6,x+y)]=[(8,w),(0, 6)] , write the value of (x+y+z) .

ICSE-DETERMINANTS -Multiple Choice Questions
  1. The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

    Text Solution

    |

  2. If [(1,3,9),(1,x,x^(2)),(4,6,9)] is singular matrix then x =

    Text Solution

    |

  3. If x+y+z=pi then the value of |{:(sin(x+y+z),sin(x+z),cosy),(-siny,0,t...

    Text Solution

    |

  4. The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

    Text Solution

    |

  5. If Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta(2...

    Text Solution

    |

  6. If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1,0):}|=0, then

    Text Solution

    |

  7. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(3)-1),(b,b^(2),b...

    Text Solution

    |

  8. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(4)-1),(b,b^(2)...

    Text Solution

    |

  9. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  10. If A is a non - singular matrix then

    Text Solution

    |

  11. If A is a non - singular matrix of order 3, then which of the followin...

    Text Solution

    |

  12. If A, B are two non-singular matrices of same order, then

    Text Solution

    |

  13. If for matrix A, A^(3)=I then A^(-1)=

    Text Solution

    |

  14. If A,B,C are non - singular matrices of same order then (AB^(-1)C)^(-1...

    Text Solution

    |

  15. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)], then the value of x is

    Text Solution

    |

  16. If A is a square matrix of order 3 such that A("adj A")=[(-3,0,0),(0,-...

    Text Solution

    |

  17. If A is a square matrix of order 3 such that A (adj A) =[(-2,0,0),(0,-...

    Text Solution

    |

  18. If A=[(a,0,0),(0,a,0),(0,0,a)],a!=0 then | adj A| is equal to

    Text Solution

    |

  19. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  20. If A and B are invertible matrices of same order, then which of the fo...

    Text Solution

    |