Home
Class 12
MATHS
The value of |{:(1,1,1),(b+c,c+a,a+b),(b...

The value of `|{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}|` is

A

`a+b+c`

B

`2(a+b+c)`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1 & 1 & 1 \\ b+c & c+a & a+b \\ b+c-a & c+a-b & a+b-c \end{vmatrix} \] we will perform some row operations to simplify it. ### Step 1: Write the determinant We start by writing the determinant: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ b+c & c+a & a+b \\ b+c-a & c+a-b & a+b-c \end{vmatrix} \] ### Step 2: Perform column operations We will perform column operations to simplify the determinant. Specifically, we will subtract the first column from the second column and the second column from the third column. \[ D = \begin{vmatrix} 1 & 1-1 & 1-1 \\ b+c & (c+a) - (b+c) & (a+b) - (c+a) \\ b+c-a & (c+a-b) - (b+c-a) & (a+b-c) - (c+a-b) \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 1 & 0 & 0 \\ b+c & a-b & b-c \\ b+c-a & a-b & 2a-b-c \end{vmatrix} \] ### Step 3: Simplify further Now we can see that the first column is \(1, b+c, b+c-a\). We can factor out common terms from the second and third columns. \[ D = \begin{vmatrix} 1 & 0 & 0 \\ b+c & a-b & b-c \\ b+c-a & a-b & 2a-b-c \end{vmatrix} \] ### Step 4: Expand the determinant Now we can expand the determinant along the first row: \[ D = 1 \cdot \begin{vmatrix} a-b & b-c \\ a-b & 2a-b-c \end{vmatrix} \] ### Step 5: Calculate the 2x2 determinant Calculating the 2x2 determinant: \[ \begin{vmatrix} a-b & b-c \\ a-b & 2a-b-c \end{vmatrix} = (a-b)(2a-b-c) - (a-b)(b-c) \] Factoring out \((a-b)\): \[ = (a-b) \left( (2a-b-c) - (b-c) \right) = (a-b)(2a - 2b) = (a-b)(2(a-b)) \] ### Step 6: Final result Thus, we have: \[ D = (a-b)(2(a-b)) = 2(a-b)^2 \] ### Conclusion The final value of the determinant is \(0\) when \(a = b\) or \(a = c\) or \(b = c\). Therefore, the answer is: \[ \text{The value of the determinant is } 0. \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos

Similar Questions

Explore conceptually related problems

The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

The value of Delta = |(1,a,b +c),(1,b,c +a),(1,c,a +b)| , is

Write the value of the following determinant |(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c)|

If a, b, c are even natural numbers, then Delta=|{:(a-1,a,a+1),(b-1,b,b+1),(c-1,c,c+1):}| is a multiple of

If a,b,c are in G.P. then the value of |(a,b,a+b),(b,c,b+c),(a+b,b+c,0)|= (A) 1 (B) -1 (C) a+b+c (D) 0

Value of |(1,a,a^2),(1,b,b^2),(1,c,c^2)| is (A) (a-b)(b-c)(c-a) (B) (a^2-b^2)(b^2-c^2)(c^2-a^2) (C) (a-b+c)(b-c+a)(c+a-b) (D) none of these

Without expanding at any stage, prove that |(a-b,1,a),(b-c,1,b),(c-a,1,c)| = |(a,1,b),(b,1,c),(c,1,a)|

If the value of the determinant |(a,1, 1) (1,b,1) (1,1,c)| is positive then a. a b c >1 b. a b c> -8 c. a b c -2

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

ICSE-DETERMINANTS -Multiple Choice Questions
  1. If [(1,3,9),(1,x,x^(2)),(4,6,9)] is singular matrix then x =

    Text Solution

    |

  2. If x+y+z=pi then the value of |{:(sin(x+y+z),sin(x+z),cosy),(-siny,0,t...

    Text Solution

    |

  3. The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

    Text Solution

    |

  4. If Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta(2...

    Text Solution

    |

  5. If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1,0):}|=0, then

    Text Solution

    |

  6. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(3)-1),(b,b^(2),b...

    Text Solution

    |

  7. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(4)-1),(b,b^(2)...

    Text Solution

    |

  8. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  9. If A is a non - singular matrix then

    Text Solution

    |

  10. If A is a non - singular matrix of order 3, then which of the followin...

    Text Solution

    |

  11. If A, B are two non-singular matrices of same order, then

    Text Solution

    |

  12. If for matrix A, A^(3)=I then A^(-1)=

    Text Solution

    |

  13. If A,B,C are non - singular matrices of same order then (AB^(-1)C)^(-1...

    Text Solution

    |

  14. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)], then the value of x is

    Text Solution

    |

  15. If A is a square matrix of order 3 such that A("adj A")=[(-3,0,0),(0,-...

    Text Solution

    |

  16. If A is a square matrix of order 3 such that A (adj A) =[(-2,0,0),(0,-...

    Text Solution

    |

  17. If A=[(a,0,0),(0,a,0),(0,0,a)],a!=0 then | adj A| is equal to

    Text Solution

    |

  18. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  19. If A and B are invertible matrices of same order, then which of the fo...

    Text Solution

    |

  20. Which of the following statements is correct ?

    Text Solution

    |