Home
Class 12
MATHS
If Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1)...

If `Delta_(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta_(2)=|{:(A,B,C),(x,y,z),(yz,zx,xy):}|`, then

A

`Delta_(1)+Delta_(2)=0`

B

`Delta_(1)-Delta_(2)=0`

C

`Delta_(1)!=Delta_(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the determinants \( \Delta_1 \) and \( \Delta_2 \) given in the question. ### Step 1: Write down the determinants The determinants are given as follows: \[ \Delta_1 = \begin{vmatrix} Ax & x^2 & 1 \\ By & y^2 & 1 \\ Cz & z^2 & 1 \end{vmatrix} \] \[ \Delta_2 = \begin{vmatrix} A & B & C \\ x & y & z \\ yz & zx & xy \end{vmatrix} \] ### Step 2: Transform \( \Delta_1 \) We can apply the property of determinants that allows us to interchange rows and columns. By interchanging rows and columns, we can express \( \Delta_1 \) in a different form: \[ \Delta_1 = \begin{vmatrix} Ax & By & Cz \\ x^2 & y^2 & z^2 \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 3: Factor out common elements Next, we can factor out \( x, y, z \) from the first column: \[ \Delta_1 = xyz \begin{vmatrix} A & B & C \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 4: Simplify \( \Delta_1 \) Now we can simplify the determinant: \[ \Delta_1 = xyz \cdot \Delta_2 \] ### Step 5: Compare \( \Delta_1 \) and \( \Delta_2 \) From the above step, we have: \[ \Delta_1 = \Delta_2 \] This implies: \[ \Delta_1 - \Delta_2 = 0 \] ### Conclusion Thus, we conclude that: \[ \Delta_1 - \Delta_2 = 0 \] So the correct option is: **Option B: \( \Delta_1 - \Delta_2 = 0 \)** ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos

Similar Questions

Explore conceptually related problems

The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,b,,c),(x,,y,,z),(yz,,xz,,xy):}|

If "Delta"=|(1,x,x^2),( 1,y, y^2),( 1,z, z^2)| , "Delta"_1=|(1, 1, 1),(yz, z x,x y), (x, y, z)| , then prove that "Delta"+"Delta"_1=0 .

If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}| ,then

Using properties of determinats prove that : |(x,x(x^(2)+1),x+1),(y,y(y^(2)+1),y+1),(z,z(z^(2)+1),z +1)|=(x-y)(y-z)(z-x)(x+y+z)

show tha |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]| =0

Prove that : =|{:(1,1,1),(x,y,z),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

Let D =|Ax x^2 1 By y^2 1 Cz z^2 1| and D1=|A B C x y z yz zx xy| , then show that D1=D .

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)

Let delta=|A x x^2 1 B y y^2 1 C z z^2 1|a n d_1=|A B C x y z y z z xx y|, then show that delta = delta1

ICSE-DETERMINANTS -Multiple Choice Questions
  1. If x+y+z=pi then the value of |{:(sin(x+y+z),sin(x+z),cosy),(-siny,0,t...

    Text Solution

    |

  2. The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

    Text Solution

    |

  3. If Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta(2...

    Text Solution

    |

  4. If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1,0):}|=0, then

    Text Solution

    |

  5. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(3)-1),(b,b^(2),b...

    Text Solution

    |

  6. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(4)-1),(b,b^(2)...

    Text Solution

    |

  7. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  8. If A is a non - singular matrix then

    Text Solution

    |

  9. If A is a non - singular matrix of order 3, then which of the followin...

    Text Solution

    |

  10. If A, B are two non-singular matrices of same order, then

    Text Solution

    |

  11. If for matrix A, A^(3)=I then A^(-1)=

    Text Solution

    |

  12. If A,B,C are non - singular matrices of same order then (AB^(-1)C)^(-1...

    Text Solution

    |

  13. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)], then the value of x is

    Text Solution

    |

  14. If A is a square matrix of order 3 such that A("adj A")=[(-3,0,0),(0,-...

    Text Solution

    |

  15. If A is a square matrix of order 3 such that A (adj A) =[(-2,0,0),(0,-...

    Text Solution

    |

  16. If A=[(a,0,0),(0,a,0),(0,0,a)],a!=0 then | adj A| is equal to

    Text Solution

    |

  17. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  18. If A and B are invertible matrices of same order, then which of the fo...

    Text Solution

    |

  19. Which of the following statements is correct ?

    Text Solution

    |

  20. For what value of k inverse does not exist for the matrix [(1,2),(k,6)...

    Text Solution

    |