Home
Class 12
MATHS
If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1...

If `|{:(a,b,aalpha-b),(b,c,balpha-c),(2,1,0):}|=0`, then

A

a,b,c are in A.P.

B

a,b,c are in G.P.

C

`alpha=2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given by the determinant equation: \[ \begin{vmatrix} a & b & a\alpha - b \\ b & c & b\alpha - c \\ 2 & 1 & 0 \end{vmatrix} = 0 \] we will follow these steps: ### Step 1: Replace the third column We will replace the third column with a linear combination of the first two columns. Specifically, we will replace the third column with: \[ \text{Column 3} - \alpha \cdot \text{Column 1} + \text{Column 2} \] This gives us the new third column as: \[ \begin{pmatrix} a\alpha - b - \alpha a + b \\ b\alpha - c - \alpha b + c \\ 0 - 2\alpha + 1 \end{pmatrix} \] ### Step 2: Simplify the new determinant After performing the column operation, the determinant becomes: \[ \begin{vmatrix} a & b & 0 \\ b & c & 0 \\ 2 & 1 & 1 - 2\alpha \end{vmatrix} \] ### Step 3: Expand the determinant Now we can expand this determinant along the third column: \[ (1 - 2\alpha) \begin{vmatrix} a & b \\ b & c \end{vmatrix} \] The determinant of the 2x2 matrix is: \[ \begin{vmatrix} a & b \\ b & c \end{vmatrix} = ac - b^2 \] Thus, we have: \[ (1 - 2\alpha)(ac - b^2) = 0 \] ### Step 4: Set up the equations From the equation above, we have two cases: 1. \(1 - 2\alpha = 0\) which gives \(\alpha = \frac{1}{2}\) 2. \(ac - b^2 = 0\) which gives \(ac = b^2\) ### Step 5: Conclusion From the second case, we can conclude that \(a\), \(b\), and \(c\) are in geometric progression (G.P.) since: \[ b^2 = ac \implies \frac{b}{a} = \frac{c}{b} \] Thus, the relationship between \(a\), \(b\), and \(c\) is that they are in G.P. ### Final Answer The relation between \(a\), \(b\), and \(c\) is that they are in geometric progression (G.P.). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos

Similar Questions

Explore conceptually related problems

the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha+c,,0):}|=0 is equal to zero if

If the determinant |(a ,b,2aalpha+3b),(b, c,2balpha+3c),(2aalpha+3b,2balpha+3c,0)|=0 then (a) a , b , c are in H.P. (b) alpha is root of 4a x^2+12 b x+9c=0 or(c) a , b , c are in G.P. (d) a , b , c , are in G.P. only a , b ,c are in A.P.

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

Prove that : |{:(0,a-b,a-c),(b-a,0,b-c),(c-a,c-b,0):}|=0

If /_\=|(0,c,b),(c,0,a),(b,a,0)|, then /_\=

If Delta=|(0,b-a,c-a),(a-b,0,c-b),(a-c,b-c,0)| , then Delta eqauals

If a ,\ b ,\ c are real numbers such that |(b+c,c+a ,a+b),( c+a,a+b,b+c),(a+b,b+c,c+a)|=0 , then show that either a+b+c=0 or, a=b=c .

If a,b,c are in G.P. then the value of |(a,b,a+b),(b,c,b+c),(a+b,b+c,0)|= (A) 1 (B) -1 (C) a+b+c (D) 0

If the determinant |[a,b,2aalpha+3b],[b,c,2balpha+3c],[2aalpha+3b,2balpha+3c,0]|=0 then (a) a , b , c are in H.P. alpha is root of 4a x^2+12 b x+9c=0 or a , b , c are in G.P. a , b , c , are in G.P. only a , b ,c are in A.P.

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

ICSE-DETERMINANTS -Multiple Choice Questions
  1. The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

    Text Solution

    |

  2. If Delta(1)=|{:(Ax,x^(2),1),(By,y^(2),1),(Cz,z^(2),1):}|" and "Delta(2...

    Text Solution

    |

  3. If |{:(a,b,aalpha-b),(b,c,balpha-c),(2,1,0):}|=0, then

    Text Solution

    |

  4. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(3)-1),(b,b^(2),b...

    Text Solution

    |

  5. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(4)-1),(b,b^(2)...

    Text Solution

    |

  6. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  7. If A is a non - singular matrix then

    Text Solution

    |

  8. If A is a non - singular matrix of order 3, then which of the followin...

    Text Solution

    |

  9. If A, B are two non-singular matrices of same order, then

    Text Solution

    |

  10. If for matrix A, A^(3)=I then A^(-1)=

    Text Solution

    |

  11. If A,B,C are non - singular matrices of same order then (AB^(-1)C)^(-1...

    Text Solution

    |

  12. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)], then the value of x is

    Text Solution

    |

  13. If A is a square matrix of order 3 such that A("adj A")=[(-3,0,0),(0,-...

    Text Solution

    |

  14. If A is a square matrix of order 3 such that A (adj A) =[(-2,0,0),(0,-...

    Text Solution

    |

  15. If A=[(a,0,0),(0,a,0),(0,0,a)],a!=0 then | adj A| is equal to

    Text Solution

    |

  16. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  17. If A and B are invertible matrices of same order, then which of the fo...

    Text Solution

    |

  18. Which of the following statements is correct ?

    Text Solution

    |

  19. For what value of k inverse does not exist for the matrix [(1,2),(k,6)...

    Text Solution

    |

  20. If |{:(2,3,2),(x,x,x),(4,9,1):}|+3=0 then the value of x is

    Text Solution

    |