Home
Class 12
MATHS
If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-...

If `A=[(2x,0),(x,x)]` and `A^(-1)=[(1,0),(-1,2)]`, then the value of x is

A

2

B

`-(1)/(2)`

C

1

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) given the matrix \( A \) and its inverse \( A^{-1} \). ### Step 1: Write down the matrices We have: \[ A = \begin{pmatrix} 2x & 0 \\ x & x \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \] ### Step 2: Use the property of inverses The property of matrix inverses states that: \[ A \cdot A^{-1} = I \] where \( I \) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 3: Multiply the matrices Now we multiply \( A \) and \( A^{-1} \): \[ A \cdot A^{-1} = \begin{pmatrix} 2x & 0 \\ x & x \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \] Calculating the product: - The element at (1,1): \[ (2x \cdot 1) + (0 \cdot -1) = 2x \] - The element at (1,2): \[ (2x \cdot 0) + (0 \cdot 2) = 0 \] - The element at (2,1): \[ (x \cdot 1) + (x \cdot -1) = x - x = 0 \] - The element at (2,2): \[ (x \cdot 0) + (x \cdot 2) = 2x \] Thus, we have: \[ A \cdot A^{-1} = \begin{pmatrix} 2x & 0 \\ 0 & 2x \end{pmatrix} \] ### Step 4: Set the product equal to the identity matrix Now we set this equal to the identity matrix: \[ \begin{pmatrix} 2x & 0 \\ 0 & 2x \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 5: Compare corresponding elements From the equality of matrices, we can compare the corresponding elements: 1. From the (1,1) position: \[ 2x = 1 \] 2. From the (2,2) position: \[ 2x = 1 \] ### Step 6: Solve for \( x \) Now, we can solve for \( x \): \[ 2x = 1 \implies x = \frac{1}{2} \] ### Conclusion Thus, the value of \( x \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ICSE|Exercise Multiple Choice Questions |37 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|56 Videos
  • GEOMETERY

    ICSE|Exercise Multiple choice questions (Assertion and Reason based questions)|2 Videos

Similar Questions

Explore conceptually related problems

Solve [(1,2),(0,0)] [(x,2),(3,3)]=[(7,0),(1,0)] , and find the value of x.

If xlt0 and (2x-1)^(2)=25 , what is the value of x?

If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0),(x,0,5)|=0, then the value of x equals (x in R):

If |[x,1],[1,x]|=|[2,0],[8,4]| then value of x is :

If x^2+2a x+a<0AAx in [1,2], the find the values of a .

If f(x) = int(5x^(8)+7x^(6))/((x^(2)+1+2x^(7))^(2))dx, (x ge 0) , and f(0) = 0, then the value of f(1) is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

ICSE-DETERMINANTS -Multiple Choice Questions
  1. If a,b,c are distinct real numbers and |{:(a,a^(2),a^(4)-1),(b,b^(2)...

    Text Solution

    |

  2. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  3. If A is a non - singular matrix then

    Text Solution

    |

  4. If A is a non - singular matrix of order 3, then which of the followin...

    Text Solution

    |

  5. If A, B are two non-singular matrices of same order, then

    Text Solution

    |

  6. If for matrix A, A^(3)=I then A^(-1)=

    Text Solution

    |

  7. If A,B,C are non - singular matrices of same order then (AB^(-1)C)^(-1...

    Text Solution

    |

  8. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)], then the value of x is

    Text Solution

    |

  9. If A is a square matrix of order 3 such that A("adj A")=[(-3,0,0),(0,-...

    Text Solution

    |

  10. If A is a square matrix of order 3 such that A (adj A) =[(-2,0,0),(0,-...

    Text Solution

    |

  11. If A=[(a,0,0),(0,a,0),(0,0,a)],a!=0 then | adj A| is equal to

    Text Solution

    |

  12. If A^(2)-A+I=O, then A^(-1) is equal to

    Text Solution

    |

  13. If A and B are invertible matrices of same order, then which of the fo...

    Text Solution

    |

  14. Which of the following statements is correct ?

    Text Solution

    |

  15. For what value of k inverse does not exist for the matrix [(1,2),(k,6)...

    Text Solution

    |

  16. If |{:(2,3,2),(x,x,x),(4,9,1):}|+3=0 then the value of x is

    Text Solution

    |

  17. The matrix [(2,-1,3),(lamda,0,7),(-1,1,4)] is not invertible for

    Text Solution

    |

  18. If A is a square matrix of order 3 and |A|=2, then the value of |-A A'...

    Text Solution

    |

  19. If A is a square matrix of order 3 and |A|=5, then value of |2A'| is

    Text Solution

    |

  20. If A is a non singular square matrix of order 3 such that A^(2)=3A, th...

    Text Solution

    |