Home
Class 12
MATHS
If vec( a) = hat(i) + hat(j) + p hat(k) ...

If `vec( a) = hat(i) + hat(j) + p hat(k)` and `vec( b) = vec( i) + hat(j) + hat(k)` then `| vec( a) + hat(b) | = | vec( a) |+ | vec( b)|` holds for

A

all real p

B

no real p

C

p =-1

D

p =1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the vectors given and check under what conditions the equation \( |\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}| \) holds true. ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + \hat{j} + p\hat{k} \] \[ \vec{b} = \hat{i} + \hat{j} + \hat{k} \] ### Step 2: Calculate the magnitudes of the vectors The magnitude of vector \(\vec{a}\) is: \[ |\vec{a}| = \sqrt{(1)^2 + (1)^2 + (p)^2} = \sqrt{2 + p^2} \] The magnitude of vector \(\vec{b}\) is: \[ |\vec{b}| = \sqrt{(1)^2 + (1)^2 + (1)^2} = \sqrt{3} \] ### Step 3: Calculate the sum of the vectors Now, we compute \(\vec{a} + \vec{b}\): \[ \vec{a} + \vec{b} = (\hat{i} + \hat{j} + p\hat{k}) + (\hat{i} + \hat{j} + \hat{k}) = 2\hat{i} + 2\hat{j} + (p + 1)\hat{k} \] ### Step 4: Calculate the magnitude of the sum Now, we find the magnitude of \(\vec{a} + \vec{b}\): \[ |\vec{a} + \vec{b}| = \sqrt{(2)^2 + (2)^2 + (p + 1)^2} = \sqrt{4 + 4 + (p + 1)^2} = \sqrt{8 + (p + 1)^2} \] ### Step 5: Set up the equation We need to check when: \[ |\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}| \] Substituting the magnitudes we calculated: \[ \sqrt{8 + (p + 1)^2} = \sqrt{2 + p^2} + \sqrt{3} \] ### Step 6: Square both sides to eliminate the square root Squaring both sides gives: \[ 8 + (p + 1)^2 = (2 + p^2) + 3 + 2\sqrt{(2 + p^2)(3)} \] This simplifies to: \[ 8 + p^2 + 2p + 1 = 5 + p^2 + 2\sqrt{(2 + p^2)(3)} \] \[ 9 + 2p = 5 + 2\sqrt{(2 + p^2)(3)} \] \[ 4 + 2p = 2\sqrt{(2 + p^2)(3)} \] Dividing by 2: \[ 2 + p = \sqrt{(2 + p^2)(3)} \] ### Step 7: Square both sides again Squaring both sides again gives: \[ (2 + p)^2 = (2 + p^2)(3) \] Expanding both sides: \[ 4 + 4p + p^2 = 6 + 3p^2 \] Rearranging gives: \[ 0 = 2p^2 - 4p + 2 \] Dividing by 2: \[ 0 = p^2 - 2p + 1 \] Factoring: \[ (p - 1)^2 = 0 \] ### Step 8: Solve for \(p\) Thus, we find: \[ p = 1 \] ### Conclusion The condition for which \( |\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}| \) holds is when \( p = 1 \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(a)= hat(i) + hat(j) + hat(k) and vec(b)= hat(j)-hat(k) , then find vec(c ) such that vec(a ) xx vec(c )= vec(b) and vec(a).vec(c )=3 .

If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx vec(b) = hat(j)-hat(k) , then the vector vec(b) is

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j) + hat(k)) =1 , then vec(a) is equal to

If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) , find the sine of the angle between vec(a) and vec(B)

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j...

    Text Solution

    |

  2. The magnitude of the vector 6 hat(i) - 2hat(j) + 3hat(k) is a) 5 units...

    Text Solution

    |

  3. The vector in the direction of the vector hat(i) - 2 hat(j) + 2hat(k) ...

    Text Solution

    |

  4. If vec(a) is a non-zero vector and m is a non-zero scalar, then m vec(...

    Text Solution

    |

  5. If |vec(a)|=4 and -3 lek le2 , then the range of | k vec(a) | is

    Text Solution

    |

  6. The vector having initial and teminal points ( 2,5,0) and ( - 3,7,4) ...

    Text Solution

    |

  7. If the sides AB and AD of a parallelogram ABCD are represented by the ...

    Text Solution

    |

  8. The position vector of the point which divides the line segment joinin...

    Text Solution

    |

  9. If the position vector of the poinot A is a+2b and a point P with posi...

    Text Solution

    |

  10. The value of lambda for which the vector 3 hat (i) -6 hat(j) + hat(k) ...

    Text Solution

    |

  11. If vec(a) = (1,-1) and vec(b) = (-2,m) are collinear vector, then m is...

    Text Solution

    |

  12. if A,B,C,D and E are five coplanar points, then vec(DA) + vec( DB) + v...

    Text Solution

    |

  13. If A,B and C are the vertices of a triangle with position vectors vec(...

    Text Solution

    |

  14. The angle between two vectors vec(a) and vec(b) with magnitudes sqrt(3...

    Text Solution

    |

  15. The angle between the vectors hat(i) - hat(j) and hat(j) - hat(k) is ...

    Text Solution

    |

  16. The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + h...

    Text Solution

    |

  17. If the angle between the vectors hat(i) + hat(k) and hat(i) + hat(j) ...

    Text Solution

    |

  18. If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) ,...

    Text Solution

    |

  19. If vec(a) and vec(b) are unit vectors, then the angle between vec(a) a...

    Text Solution

    |

  20. If theta is the angle between two vectors vec(a) and vec(b), then vec(...

    Text Solution

    |

  21. The projection of the vector hat(i) +hat(j) + hat(k) along vector hat(...

    Text Solution

    |