Home
Class 12
MATHS
If vec(a) and vec( b) are inclined at an...

If `vec(a)` and `vec( b)` are inclined at an angle of `120^(@)` and `|vec(a)| =1, |vec(b)|=2` , then t`((vec(a) + 3 vec(b)) xx (3 vec(a) - vec(b)))^(2)` is equal to

A

225

B

250

C

275

D

300

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the expression \((\vec{a} + 3\vec{b}) \times (3\vec{a} - \vec{b})\) and then square its magnitude. We are given that \(|\vec{a}| = 1\), \(|\vec{b}| = 2\), and the angle between \(\vec{a}\) and \(\vec{b}\) is \(120^\circ\). ### Step-by-Step Solution: 1. **Identify the Magnitudes and Angle**: - \(|\vec{a}| = 1\) - \(|\vec{b}| = 2\) - \(\theta = 120^\circ\) 2. **Calculate the Cross Product**: We need to expand the expression \((\vec{a} + 3\vec{b}) \times (3\vec{a} - \vec{b})\): \[ (\vec{a} + 3\vec{b}) \times (3\vec{a} - \vec{b}) = \vec{a} \times 3\vec{a} + \vec{a} \times (-\vec{b}) + 3\vec{b} \times 3\vec{a} + 3\vec{b} \times (-\vec{b}) \] - The term \(\vec{a} \times 3\vec{a} = 0\) (cross product of a vector with itself is zero). - The term \(3\vec{b} \times (-\vec{b}) = 0\) (same reason). Thus, we simplify to: \[ \vec{a} \times (-\vec{b}) + 9\vec{b} \times \vec{a} = -\vec{a} \times \vec{b} + 9\vec{b} \times \vec{a} \] Using the property of cross products \(\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})\): \[ -\vec{a} \times \vec{b} - 9(\vec{a} \times \vec{b}) = -10(\vec{a} \times \vec{b}) \] 3. **Magnitude of the Cross Product**: The magnitude of \(\vec{a} \times \vec{b}\) is given by: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\theta) \] Substituting the known values: \[ |\vec{a} \times \vec{b}| = 1 \cdot 2 \cdot \sin(120^\circ) \] We know \(\sin(120^\circ) = \frac{\sqrt{3}}{2}\): \[ |\vec{a} \times \vec{b}| = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \] 4. **Calculate the Magnitude of the Cross Product**: Therefore, we have: \[ | -10(\vec{a} \times \vec{b}) | = 10 |\vec{a} \times \vec{b}| = 10 \cdot \sqrt{3} \] 5. **Square the Magnitude**: Now, we need to square this magnitude: \[ | -10(\vec{a} \times \vec{b}) |^2 = (10 \sqrt{3})^2 = 100 \cdot 3 = 300 \] Thus, the final answer is: \[ \boxed{300} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12 , then | vec(a) xx vec(b) | is equal to

If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10 , then | vec(a). vec(b) |^(2) is equal to

Vectors vec a\ a n d\ vec b are inclined at angel theta=120^0 . If | vec a|=1,\ | vec b|=2,\ then [( vec a+3 vec b)xx(3 vec a- vec b)]^2 is equal to 300 b. 235 c. 275 d. 225

If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

|vec(a)|=2, |vec(b)|=3 and vec(a).vec(b)= -8 , then the value of |vec(a) + 3vec(b)| is

if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) | =4 then |vec(b) | is equal to

If |vec(A)| = 4N, |vec(B)| = 3N the value of |vec(A) xx vec(B)|^(2) + |vec(A).vec(B)|^(2) =

If (vec(a) + vec(b)) _|_ vec(b) and (vec(a) + 2 vec(b))_|_ vec(a) , then

If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1 , then

Find the angle between vec(a) and vec(b) if |vec(a)| = 4, |vec(b)|= 2 sqrt3 and |vec(a) xx vec(b)| = 12

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. If vec(a) and vec( b) are inclined at an angle of 120^(@) and |vec(a)|...

    Text Solution

    |

  2. The magnitude of the vector 6 hat(i) - 2hat(j) + 3hat(k) is a) 5 units...

    Text Solution

    |

  3. The vector in the direction of the vector hat(i) - 2 hat(j) + 2hat(k) ...

    Text Solution

    |

  4. If vec(a) is a non-zero vector and m is a non-zero scalar, then m vec(...

    Text Solution

    |

  5. If |vec(a)|=4 and -3 lek le2 , then the range of | k vec(a) | is

    Text Solution

    |

  6. The vector having initial and teminal points ( 2,5,0) and ( - 3,7,4) ...

    Text Solution

    |

  7. If the sides AB and AD of a parallelogram ABCD are represented by the ...

    Text Solution

    |

  8. The position vector of the point which divides the line segment joinin...

    Text Solution

    |

  9. If the position vector of the poinot A is a+2b and a point P with posi...

    Text Solution

    |

  10. The value of lambda for which the vector 3 hat (i) -6 hat(j) + hat(k) ...

    Text Solution

    |

  11. If vec(a) = (1,-1) and vec(b) = (-2,m) are collinear vector, then m is...

    Text Solution

    |

  12. if A,B,C,D and E are five coplanar points, then vec(DA) + vec( DB) + v...

    Text Solution

    |

  13. If A,B and C are the vertices of a triangle with position vectors vec(...

    Text Solution

    |

  14. The angle between two vectors vec(a) and vec(b) with magnitudes sqrt(3...

    Text Solution

    |

  15. The angle between the vectors hat(i) - hat(j) and hat(j) - hat(k) is ...

    Text Solution

    |

  16. The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + h...

    Text Solution

    |

  17. If the angle between the vectors hat(i) + hat(k) and hat(i) + hat(j) ...

    Text Solution

    |

  18. If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) ,...

    Text Solution

    |

  19. If vec(a) and vec(b) are unit vectors, then the angle between vec(a) a...

    Text Solution

    |

  20. If theta is the angle between two vectors vec(a) and vec(b), then vec(...

    Text Solution

    |

  21. The projection of the vector hat(i) +hat(j) + hat(k) along vector hat(...

    Text Solution

    |