Home
Class 12
MATHS
If vec(a), vec(b) , vec(c ) are three ve...

If `vec(a), vec(b) , vec(c )` are three vectors such that `| vec(a) + vec(b) + vec( c )| = 1, vec( c)= lambda( vec( a) xx vec(b)), lambda` is non-zero scalar and `|vec(a)| = (1)/( sqrt( 6)), | vec(b) | = (1)/(sqrt(2)) , | vec(c )| = (1)/( sqrt(3))` , then the angle between `vec (a)` and `vec(b)` is

A

`(pi )/( 4)`

B

`(pi )/( 3)`

C

`(pi)/(2)`

D

`(2pi )/( 3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will analyze the given information and derive the angle between the vectors \(\vec{a}\) and \(\vec{b}\). ### Given: 1. \(|\vec{a} + \vec{b} + \vec{c}| = 1\) 2. \(\vec{c} = \lambda (\vec{a} \times \vec{b})\) where \(\lambda\) is a non-zero scalar. 3. \(|\vec{a}| = \frac{1}{\sqrt{6}}\) 4. \(|\vec{b}| = \frac{1}{\sqrt{2}}\) 5. \(|\vec{c}| = \frac{1}{\sqrt{3}}\) ### Step 1: Use the magnitude equation From the first equation, we can express the magnitude squared: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 1^2 = 1 \] Expanding this using the properties of vectors: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] ### Step 2: Substitute the magnitudes Substituting the magnitudes: \[ |\vec{a}|^2 = \left(\frac{1}{\sqrt{6}}\right)^2 = \frac{1}{6}, \quad |\vec{b}|^2 = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}, \quad |\vec{c}|^2 = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] Now substituting these values into the equation: \[ 1 = \frac{1}{6} + \frac{1}{2} + \frac{1}{3} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] ### Step 3: Calculate the sum of squares Calculating the sum of the squares: \[ \frac{1}{6} + \frac{1}{2} + \frac{1}{3} = \frac{1}{6} + \frac{3}{6} + \frac{2}{6} = \frac{6}{6} = 1 \] Thus, we have: \[ 1 = 1 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] This simplifies to: \[ 0 = 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] This implies: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0 \] ### Step 4: Analyze \(\vec{c}\) Since \(\vec{c} = \lambda (\vec{a} \times \vec{b})\), it is perpendicular to both \(\vec{a}\) and \(\vec{b}\). Therefore: \[ \vec{b} \cdot \vec{c} = 0 \quad \text{and} \quad \vec{a} \cdot \vec{c} = 0 \] Thus, we have: \[ \vec{a} \cdot \vec{b} = 0 \] This means that the angle \(\theta\) between \(\vec{a}\) and \(\vec{b}\) is: \[ \cos \theta = 0 \] This implies: \[ \theta = \frac{\pi}{2} \quad \text{(90 degrees)} \] ### Conclusion The angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{\pi}{2}\).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b)| =3 and | vec( c)| =4 , then the angle between vec(b) and vec(c ) is

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

If vec a , vec b , vec c are three vectors such that | vec a+ vec b+ vec c|=1, vec c=lambda( vec axx vec b)a n d| vec a|=1/(sqrt(2)),| vec b|=1/(sqrt(3)),| vec c|=1/(sqrt(6)) , find the angle between vec aa n d vec bdot

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , angle, between vec aa n d vec b is (2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angel between vec aa n d vec b is pi/6 b. pi/4 c. pi/3 d. pi/2

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec a ,\ vec b ,\ vec c are three vectors such that vec a. vec b= vec a.\ vec c and vec a\ xx\ vec b= vec a\ xx\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .

If vec(a), vec(b) and vec(c) are three vectors such that vec(a) times vec(b)=vec(c) and vec(b) times vec(c)=vec(a)," prove that "vec(a), vec(b), vec(c) are mutually perpendicular and abs(vec(b))=1 and abs(vec(c))=abs(vec(a)) .

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. If vec(a), vec(b) , vec(c ) are three vectors such that | vec(a) + vec...

    Text Solution

    |

  2. The magnitude of the vector 6 hat(i) - 2hat(j) + 3hat(k) is a) 5 units...

    Text Solution

    |

  3. The vector in the direction of the vector hat(i) - 2 hat(j) + 2hat(k) ...

    Text Solution

    |

  4. If vec(a) is a non-zero vector and m is a non-zero scalar, then m vec(...

    Text Solution

    |

  5. If |vec(a)|=4 and -3 lek le2 , then the range of | k vec(a) | is

    Text Solution

    |

  6. The vector having initial and teminal points ( 2,5,0) and ( - 3,7,4) ...

    Text Solution

    |

  7. If the sides AB and AD of a parallelogram ABCD are represented by the ...

    Text Solution

    |

  8. The position vector of the point which divides the line segment joinin...

    Text Solution

    |

  9. If the position vector of the poinot A is a+2b and a point P with posi...

    Text Solution

    |

  10. The value of lambda for which the vector 3 hat (i) -6 hat(j) + hat(k) ...

    Text Solution

    |

  11. If vec(a) = (1,-1) and vec(b) = (-2,m) are collinear vector, then m is...

    Text Solution

    |

  12. if A,B,C,D and E are five coplanar points, then vec(DA) + vec( DB) + v...

    Text Solution

    |

  13. If A,B and C are the vertices of a triangle with position vectors vec(...

    Text Solution

    |

  14. The angle between two vectors vec(a) and vec(b) with magnitudes sqrt(3...

    Text Solution

    |

  15. The angle between the vectors hat(i) - hat(j) and hat(j) - hat(k) is ...

    Text Solution

    |

  16. The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + h...

    Text Solution

    |

  17. If the angle between the vectors hat(i) + hat(k) and hat(i) + hat(j) ...

    Text Solution

    |

  18. If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) ,...

    Text Solution

    |

  19. If vec(a) and vec(b) are unit vectors, then the angle between vec(a) a...

    Text Solution

    |

  20. If theta is the angle between two vectors vec(a) and vec(b), then vec(...

    Text Solution

    |

  21. The projection of the vector hat(i) +hat(j) + hat(k) along vector hat(...

    Text Solution

    |