Home
Class 12
MATHS
The value of lambda for which the vector...

The value of `lambda` for which the vector `3 hat (i) -6 hat(j) + hat(k)` and `2 hat(i) - 4 hat(j) + lambda vec(k)` are parallel is

A

`(3)/(2)`

B

`(2)/(3)`

C

`(5)/(2)`

D

`(2)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) for which the vectors \( \vec{A} = 3\hat{i} - 6\hat{j} + \hat{k} \) and \( \vec{B} = 2\hat{i} - 4\hat{j} + \lambda\hat{k} \) are parallel, we can follow these steps: ### Step 1: Identify the components of the vectors The components of the vectors are: - For \( \vec{A} \): \( a_1 = 3 \), \( b_1 = -6 \), \( c_1 = 1 \) - For \( \vec{B} \): \( a_2 = 2 \), \( b_2 = -4 \), \( c_2 = \lambda \) ### Step 2: Set up the condition for parallel vectors Two vectors are parallel if the ratios of their corresponding components are equal: \[ \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \] This gives us the following equations: \[ \frac{3}{2} = \frac{-6}{-4} = \frac{1}{\lambda} \] ### Step 3: Solve the first ratio We can simplify the second ratio: \[ \frac{-6}{-4} = \frac{6}{4} = \frac{3}{2} \] Thus, we have: \[ \frac{3}{2} = \frac{1}{\lambda} \] ### Step 4: Cross-multiply to find \( \lambda \) Cross-multiplying gives: \[ 3\lambda = 2 \] Now, solve for \( \lambda \): \[ \lambda = \frac{2}{3} \] ### Step 5: Verify using the third ratio We can also check using the third ratio: \[ \frac{3}{2} = \frac{1}{\lambda} \] Cross-multiplying gives the same result: \[ 3\lambda = 2 \implies \lambda = \frac{2}{3} \] ### Conclusion The value of \( \lambda \) for which the vectors are parallel is: \[ \lambda = \frac{2}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + hat(k) and hat(i) + 2 hat(j) + 3 hat(k) are perpendicular is

The value of lambda for which the two vectors vec(a) = 5hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + hat(k) are perpendicular to each other is :

Show that the vectors vec(A) = 2 hat(i) - 3 hat(j)-1hat(k) and vec(B) = - 6hat(i) +9 hat(j) +3 hat(k) are parallel .

If two vectors 2hat(i)+3hat(j)-hat(k) and -4hat(i)-6hat(j)-lambda hat(k) are parallel to each other,then find the value of lambda

If two vectors 2hat(i)+3hat(j)-hat(k) and -4hat(i)-6hat(j)-lambda hat(k) are parallel to each other,then find the value of lambda

The number of distinct real values of lambda , for which the vectors -lambda^2 hat i+ hat j+k , hat i-lambda^2 hat j+ hat ka n d hat i+ hat j-lambda^2 hat k are coplanar is a. zero b. one c. two d. three

Write the value of lambda so that the vector vec a=2 hat i+lambda hat j+ hat k\ a n d\ vec b= hat i-2 hat j+3 hat k are perpendicular to each other.

Find the value of lambda for which the four points with position vector 3 hat i-2 hat j- hat k ,2 hat i+3 hat j-4 hat k ,- hat i+ hat j+2 hat k and4 hat i+5 hat j+lambda hat k are coplanar.

Determine lambda such that a vector vec(r) is at right angles to each of the vectors vec(a) = lambda hat(i) + hat(j) + 3hat(k), vec(b) = 2hat(i) + hat(j) - lambda hat(k), vec(c) = -2hat(i) + lambda hat(j) + 3hat(k) .

Find the value of lambdadot If the vectors 2 hat i+lambda hat j+3 hat k\ a n d\ 3 hat i+2 hat j-4 hat k are perpendicular to each other.

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. The position vector of the point which divides the line segment joinin...

    Text Solution

    |

  2. If the position vector of the poinot A is a+2b and a point P with posi...

    Text Solution

    |

  3. The value of lambda for which the vector 3 hat (i) -6 hat(j) + hat(k) ...

    Text Solution

    |

  4. If vec(a) = (1,-1) and vec(b) = (-2,m) are collinear vector, then m is...

    Text Solution

    |

  5. if A,B,C,D and E are five coplanar points, then vec(DA) + vec( DB) + v...

    Text Solution

    |

  6. If A,B and C are the vertices of a triangle with position vectors vec(...

    Text Solution

    |

  7. The angle between two vectors vec(a) and vec(b) with magnitudes sqrt(3...

    Text Solution

    |

  8. The angle between the vectors hat(i) - hat(j) and hat(j) - hat(k) is ...

    Text Solution

    |

  9. The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + h...

    Text Solution

    |

  10. If the angle between the vectors hat(i) + hat(k) and hat(i) + hat(j) ...

    Text Solution

    |

  11. If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) ,...

    Text Solution

    |

  12. If vec(a) and vec(b) are unit vectors, then the angle between vec(a) a...

    Text Solution

    |

  13. If theta is the angle between two vectors vec(a) and vec(b), then vec(...

    Text Solution

    |

  14. The projection of the vector hat(i) +hat(j) + hat(k) along vector hat(...

    Text Solution

    |

  15. The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along...

    Text Solution

    |

  16. If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j)...

    Text Solution

    |

  17. If | vec(a) | =3 and |vec(b) |=4, then the value of lambda for which v...

    Text Solution

    |

  18. (vec(a). hat(i) )^(2) + ( vec(a).hat(j))^(2) + ( vec(a) . hat(k))^(2) ...

    Text Solution

    |

  19. If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j...

    Text Solution

    |

  20. if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) |...

    Text Solution

    |