Home
Class 12
MATHS
if A,B,C,D and E are five coplanar point...

if A,B,C,D and E are five coplanar points, then `vec(DA) + vec( DB) + vec(DC ) + vec( AE) + vec( BE) + vec( CE)` is equal to `:`

A

`vec(DE)`

B

`3 vec(DE)`

C

`2 vec(DE)`

D

`4 vec(ED)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the vectors given in the expression: \[ \vec{DA} + \vec{DB} + \vec{DC} + \vec{AE} + \vec{BE} + \vec{CE} \] where \( A, B, C, D, \) and \( E \) are five coplanar points. ### Step 1: Express the vectors in terms of a common point Since the points are coplanar, we can express each vector in terms of a common point, say point \( D \). Using the vector notation: - \(\vec{DA} = \vec{A} - \vec{D}\) - \(\vec{DB} = \vec{B} - \vec{D}\) - \(\vec{DC} = \vec{C} - \vec{D}\) - \(\vec{AE} = \vec{E} - \vec{A}\) - \(\vec{BE} = \vec{E} - \vec{B}\) - \(\vec{CE} = \vec{E} - \vec{C}\) ### Step 2: Substitute the expressions into the equation Now, substituting these expressions into the original equation: \[ \vec{DA} + \vec{DB} + \vec{DC} + \vec{AE} + \vec{BE} + \vec{CE} = (\vec{A} - \vec{D}) + (\vec{B} - \vec{D}) + (\vec{C} - \vec{D}) + (\vec{E} - \vec{A}) + (\vec{E} - \vec{B}) + (\vec{E} - \vec{C}) \] ### Step 3: Combine like terms Now, let's combine the terms: \[ = \vec{A} + \vec{B} + \vec{C} + \vec{E} + \vec{E} + \vec{E} - 3\vec{D} \] This simplifies to: \[ = \vec{A} + \vec{B} + \vec{C} + 3\vec{E} - 3\vec{D} \] ### Step 4: Rearranging the equation Rearranging gives us: \[ = 3\vec{E} - 3\vec{D} + \vec{A} + \vec{B} + \vec{C} \] ### Step 5: Recognizing the coplanarity Since \( A, B, C, D, \) and \( E \) are coplanar, the vectors can be expressed in terms of the position of point \( D \) and point \( E \). Thus, we can conclude that: \[ \vec{DA} + \vec{DB} + \vec{DC} + \vec{AE} + \vec{BE} + \vec{CE} = 3\vec{DE} \] ### Final Answer Thus, the expression simplifies to: \[ \vec{DA} + \vec{DB} + \vec{DC} + \vec{AE} + \vec{BE} + \vec{CE} = 3\vec{DE} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0

If vec a , vec b and vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c).[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

If vec a ,\ vec b ,\ vec c are three non coplanar vectors, then ( vec a+ vec b+ vec c)dot[( vec a+ vec b)xx) vec a+ vec c)] equals [ vec a\ vec b\ vec c] b. "\ "0"\ " c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

A B C D E is pentagon, prove that vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

If vec(a)vec(b)vec(c ) and vec(d) are vectors such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c ) = vec(b)xxvec(d) . Then show that the vectors vec(a) -vec(d) and vec(b) -vec(c ) are parallel.

Show that vec(a), vec(b), vec(c ) are coplanar if and only if vec(a) + vec(b), vec(b) + vec(c ), vec( c) + vec(a) are coplanar

If vec rdot vec a= vec rdot vec b= vec rdot vec c=0,w h e r e vec a , vec b ,a n d vec c are non-coplanar, then a. vec r_|_( vec cxx vec a) b. vec r_|_( vec axx vec b) c. vec r_|_( vec bxx vec c) d. vec r= vec0

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. The value of lambda for which the vector 3 hat (i) -6 hat(j) + hat(k) ...

    Text Solution

    |

  2. If vec(a) = (1,-1) and vec(b) = (-2,m) are collinear vector, then m is...

    Text Solution

    |

  3. if A,B,C,D and E are five coplanar points, then vec(DA) + vec( DB) + v...

    Text Solution

    |

  4. If A,B and C are the vertices of a triangle with position vectors vec(...

    Text Solution

    |

  5. The angle between two vectors vec(a) and vec(b) with magnitudes sqrt(3...

    Text Solution

    |

  6. The angle between the vectors hat(i) - hat(j) and hat(j) - hat(k) is ...

    Text Solution

    |

  7. The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + h...

    Text Solution

    |

  8. If the angle between the vectors hat(i) + hat(k) and hat(i) + hat(j) ...

    Text Solution

    |

  9. If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) ,...

    Text Solution

    |

  10. If vec(a) and vec(b) are unit vectors, then the angle between vec(a) a...

    Text Solution

    |

  11. If theta is the angle between two vectors vec(a) and vec(b), then vec(...

    Text Solution

    |

  12. The projection of the vector hat(i) +hat(j) + hat(k) along vector hat(...

    Text Solution

    |

  13. The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along...

    Text Solution

    |

  14. If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j)...

    Text Solution

    |

  15. If | vec(a) | =3 and |vec(b) |=4, then the value of lambda for which v...

    Text Solution

    |

  16. (vec(a). hat(i) )^(2) + ( vec(a).hat(j))^(2) + ( vec(a) . hat(k))^(2) ...

    Text Solution

    |

  17. If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j...

    Text Solution

    |

  18. if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) |...

    Text Solution

    |

  19. If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10, then | ...

    Text Solution

    |

  20. If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12, then | vec...

    Text Solution

    |