Home
Class 12
MATHS
If A,B and C are the vertices of a trian...

If A,B and C are the vertices of a triangle with position vectors `vec(a) , vec(b) ` and `vec(c )` respectively and G is the centroid of `Delta ABC`, then `vec( GA) + vec( GB ) + vec( GC )` is equal to

A

`vec( 0 ) `

B

`vec( a) + vec( b) + vec( c )`

C

`(vec( a) + vec( b) + vec( c ))/(3)`

D

`(vec( a) - vec( b) - vec( c ))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( \vec{GA} + \vec{GB} + \vec{GC} \) where \( G \) is the centroid of triangle \( ABC \) with position vectors \( \vec{A}, \vec{B}, \vec{C} \). ### Step-by-Step Solution: 1. **Understanding the Centroid**: The centroid \( G \) of triangle \( ABC \) is given by the formula: \[ \vec{G} = \frac{\vec{A} + \vec{B} + \vec{C}}{3} \] 2. **Expressing Vectors from G to A, B, and C**: We can express the vectors \( \vec{GA}, \vec{GB}, \) and \( \vec{GC} \) in terms of \( \vec{G} \): \[ \vec{GA} = \vec{A} - \vec{G} \] \[ \vec{GB} = \vec{B} - \vec{G} \] \[ \vec{GC} = \vec{C} - \vec{G} \] 3. **Adding the Vectors**: Now, we can add these vectors together: \[ \vec{GA} + \vec{GB} + \vec{GC} = (\vec{A} - \vec{G}) + (\vec{B} - \vec{G}) + (\vec{C} - \vec{G}) \] Simplifying this, we get: \[ = \vec{A} + \vec{B} + \vec{C} - 3\vec{G} \] 4. **Substituting the Value of G**: Now substitute \( \vec{G} \) into the equation: \[ = \vec{A} + \vec{B} + \vec{C} - 3\left(\frac{\vec{A} + \vec{B} + \vec{C}}{3}\right) \] This simplifies to: \[ = \vec{A} + \vec{B} + \vec{C} - (\vec{A} + \vec{B} + \vec{C}) \] \[ = 0 \] 5. **Conclusion**: Therefore, the final result is: \[ \vec{GA} + \vec{GB} + \vec{GC} = \vec{0} \] ### Final Answer: \[ \vec{GA} + \vec{GB} + \vec{GC} = \vec{0} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If G is the centroid of Delta ABC and G' is the centroid of Delta A' B' C' " then " vec(A A)' + vec(B B)' + vec(C C)' =

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If G denotes the centroid of Delta \ A B C ,\ then write the value of vec (G A) + vec (G B)+ vec (G C)dot

If O A B C is a tetrahedron where O is the orogin anf A ,B ,a n dC are the other three vertices with position vectors, vec a , vec b ,a n d vec c respectively, then prove that the centre of the sphere circumscribing the tetrahedron is given by position vector (a^2( vec bxx vec c)+b^2( vec cxx vec a)+c^2( vec axx vec b))/(2[ vec a vec b vec c]) .

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

if G is the centroid of triangleABC such that vec(GB) and vec(GC) are inclined at on obtuse angle, then

If the vectors vec(a) + vec(b), vec(b) + vec(c) and vec(c) + vec(a) are coplanar, then prove that the vectors vec(a), vec(b) and vec(c) are also coplanar.

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. If vec(a) = (1,-1) and vec(b) = (-2,m) are collinear vector, then m is...

    Text Solution

    |

  2. if A,B,C,D and E are five coplanar points, then vec(DA) + vec( DB) + v...

    Text Solution

    |

  3. If A,B and C are the vertices of a triangle with position vectors vec(...

    Text Solution

    |

  4. The angle between two vectors vec(a) and vec(b) with magnitudes sqrt(3...

    Text Solution

    |

  5. The angle between the vectors hat(i) - hat(j) and hat(j) - hat(k) is ...

    Text Solution

    |

  6. The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + h...

    Text Solution

    |

  7. If the angle between the vectors hat(i) + hat(k) and hat(i) + hat(j) ...

    Text Solution

    |

  8. If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) ,...

    Text Solution

    |

  9. If vec(a) and vec(b) are unit vectors, then the angle between vec(a) a...

    Text Solution

    |

  10. If theta is the angle between two vectors vec(a) and vec(b), then vec(...

    Text Solution

    |

  11. The projection of the vector hat(i) +hat(j) + hat(k) along vector hat(...

    Text Solution

    |

  12. The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along...

    Text Solution

    |

  13. If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j)...

    Text Solution

    |

  14. If | vec(a) | =3 and |vec(b) |=4, then the value of lambda for which v...

    Text Solution

    |

  15. (vec(a). hat(i) )^(2) + ( vec(a).hat(j))^(2) + ( vec(a) . hat(k))^(2) ...

    Text Solution

    |

  16. If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j...

    Text Solution

    |

  17. if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) |...

    Text Solution

    |

  18. If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10, then | ...

    Text Solution

    |

  19. If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12, then | vec...

    Text Solution

    |

  20. If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2, then | vec( a) |^...

    Text Solution

    |