Home
Class 12
MATHS
The angle between the vectors hat(i) - h...

The angle between the vectors `hat(i) - hat(j) ` and `hat(j) - hat(k)` is a) -π/3 b) 2π/3 c) π/6 d) 5π/6

A

`- ( pi )/( 3)`

B

`( 2pi )/( 3)`

C

`( pi )/( 6)`

D

` ( 5pi )/( 6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\hat{i} - \hat{j}\) and \(\hat{j} - \hat{k}\), we will follow these steps: ### Step 1: Define the Vectors Let: \[ \mathbf{a} = \hat{i} - \hat{j} \] \[ \mathbf{b} = \hat{j} - \hat{k} \] ### Step 2: Calculate the Dot Product The dot product \(\mathbf{a} \cdot \mathbf{b}\) can be calculated as follows: \[ \mathbf{a} \cdot \mathbf{b} = (\hat{i} - \hat{j}) \cdot (\hat{j} - \hat{k}) \] Using the distributive property of the dot product: \[ \mathbf{a} \cdot \mathbf{b} = \hat{i} \cdot \hat{j} - \hat{i} \cdot \hat{k} - \hat{j} \cdot \hat{j} + \hat{j} \cdot \hat{k} \] Since \(\hat{i} \cdot \hat{j} = 0\), \(\hat{i} \cdot \hat{k} = 0\), \(\hat{j} \cdot \hat{j} = 1\), and \(\hat{j} \cdot \hat{k} = 0\), we have: \[ \mathbf{a} \cdot \mathbf{b} = 0 - 0 - 1 + 0 = -1 \] ### Step 3: Calculate the Magnitudes of the Vectors Now we calculate the magnitudes of \(\mathbf{a}\) and \(\mathbf{b}\). For \(\mathbf{a}\): \[ |\mathbf{a}| = \sqrt{(1)^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] For \(\mathbf{b}\): \[ |\mathbf{b}| = \sqrt{(0)^2 + (1)^2 + (-1)^2} = \sqrt{0 + 1 + 1} = \sqrt{2} \] ### Step 4: Use the Cosine Formula The cosine of the angle \(\theta\) between the two vectors can be found using the formula: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \] Substituting the values we calculated: \[ \cos \theta = \frac{-1}{\sqrt{2} \cdot \sqrt{2}} = \frac{-1}{2} \] ### Step 5: Find the Angle Now we need to find the angle \(\theta\) such that: \[ \cos \theta = -\frac{1}{2} \] The angle that satisfies this equation is: \[ \theta = \frac{2\pi}{3} \text{ (or } 120^\circ\text{)} \] ### Final Answer Thus, the angle between the vectors \(\hat{i} - \hat{j}\) and \(\hat{j} - \hat{k}\) is: \[ \theta = \frac{2\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

The angle between the vectors hat i -hat j and hat j - hat k is (A) - pi/3 (B) 0 (C) pi/3 (D) 2 pi/3

Find the angle between the vectors hat i-2 hat j+3k and 3 hat i-2 hat j+k

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Find the angle between the vectors 5hat i+3 hat j+4 hat k and 6 hat i-8 hat j- hat k .

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

If theta is the angle between the vectors 2 hat i-2 hat j+4 hat k\ a n d\ 3 hat i+ hat j+2 hat k , then sintheta= 2/3 b. 2/(sqrt(7)) c. (sqrt(2))/7 d. sqrt(2/7)

Find the vector of magnitude 3, bisecting the angle between the vectors vec a=2 hat i+ hat j- hat k and vec b= hat i-2 hat j+ hat kdot

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. If A,B and C are the vertices of a triangle with position vectors vec(...

    Text Solution

    |

  2. The angle between two vectors vec(a) and vec(b) with magnitudes sqrt(3...

    Text Solution

    |

  3. The angle between the vectors hat(i) - hat(j) and hat(j) - hat(k) is ...

    Text Solution

    |

  4. The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + h...

    Text Solution

    |

  5. If the angle between the vectors hat(i) + hat(k) and hat(i) + hat(j) ...

    Text Solution

    |

  6. If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) ,...

    Text Solution

    |

  7. If vec(a) and vec(b) are unit vectors, then the angle between vec(a) a...

    Text Solution

    |

  8. If theta is the angle between two vectors vec(a) and vec(b), then vec(...

    Text Solution

    |

  9. The projection of the vector hat(i) +hat(j) + hat(k) along vector hat(...

    Text Solution

    |

  10. The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along...

    Text Solution

    |

  11. If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j)...

    Text Solution

    |

  12. If | vec(a) | =3 and |vec(b) |=4, then the value of lambda for which v...

    Text Solution

    |

  13. (vec(a). hat(i) )^(2) + ( vec(a).hat(j))^(2) + ( vec(a) . hat(k))^(2) ...

    Text Solution

    |

  14. If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j...

    Text Solution

    |

  15. if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) |...

    Text Solution

    |

  16. If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10, then | ...

    Text Solution

    |

  17. If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12, then | vec...

    Text Solution

    |

  18. If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2, then | vec( a) |^...

    Text Solution

    |

  19. If |vec(a) | = 8 , | vec(b) =3 and | vec( a) xx vec( b) |=12 , then t...

    Text Solution

    |

  20. If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b...

    Text Solution

    |