Home
Class 12
MATHS
The value of lambda for which the vector...

The value of `lambda` for which the vectors `2 hat(i) + lambda hat(j) + hat(k)` and `hat(i) + 2 hat(j) + 3 hat(k)` are perpendicular is

A

0

B

1

C

`(3)/(2)`

D

`- ( 5)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for which the vectors \( \mathbf{A} = 2\hat{i} + \lambda\hat{j} + \hat{k} \) and \( \mathbf{B} = \hat{i} + 2\hat{j} + 3\hat{k} \) are perpendicular, we can follow these steps: ### Step 1: Understand the condition for perpendicular vectors Two vectors are perpendicular if their dot product is zero. Therefore, we need to set up the equation: \[ \mathbf{A} \cdot \mathbf{B} = 0 \] ### Step 2: Write down the vectors Let: \[ \mathbf{A} = 2\hat{i} + \lambda\hat{j} + \hat{k} \] \[ \mathbf{B} = \hat{i} + 2\hat{j} + 3\hat{k} \] ### Step 3: Calculate the dot product Now, we compute the dot product \( \mathbf{A} \cdot \mathbf{B} \): \[ \mathbf{A} \cdot \mathbf{B} = (2\hat{i} + \lambda\hat{j} + \hat{k}) \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) \] Using the properties of dot product: \[ = 2(\hat{i} \cdot \hat{i}) + \lambda(\hat{j} \cdot 2\hat{j}) + 1(\hat{k} \cdot 3\hat{k}) \] ### Step 4: Simplify the dot product Calculating each term: - \( \hat{i} \cdot \hat{i} = 1 \) - \( \hat{j} \cdot \hat{j} = 1 \) - \( \hat{k} \cdot \hat{k} = 1 \) Thus: \[ = 2(1) + \lambda(2) + 1(3) = 2 + 2\lambda + 3 \] ### Step 5: Set the dot product equal to zero Now, set the dot product equal to zero: \[ 2 + 2\lambda + 3 = 0 \] ### Step 6: Solve for \( \lambda \) Combine the constants: \[ 5 + 2\lambda = 0 \] \[ 2\lambda = -5 \] \[ \lambda = -\frac{5}{2} \] ### Conclusion The value of \( \lambda \) for which the vectors are perpendicular is: \[ \lambda = -\frac{5}{2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

The value of lambda for which the two vectors vec(a) = 5hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + hat(k) are perpendicular to each other is :

The value of lambda for which the vector 3 hat (i) -6 hat(j) + hat(k) and 2 hat(i) - 4 hat(j) + lambda vec(k) are parallel is

Write the value of lambda so that the vector vec a=2 hat i+lambda hat j+ hat k\ a n d\ vec b= hat i-2 hat j+3 hat k are perpendicular to each other.

Find the value of lambda so that the vectors vec a=2 hat i+lambda hat j+ hat ka n d vec b= hat i-2 hat j+3 hat k are perpendicular to each other.

Find the value of lambdadot If the vectors 2 hat i+lambda hat j+3 hat k\ a n d\ 3 hat i+2 hat j-4 hat k are perpendicular to each other.

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

For what value of lambda are the vectores vec a=2 hat i+lambda hat j+ hat k\ a n d\ vec b= hat i-2 hat j+3 hat k perpendicular to each other?

For what value lambda are the vectors vec a=2 hat i+\ lambda hat j+ hat k\ a n d\ vec b= hat i-\ 2 hat j+3 hat k perpendicular to each other?

For what value of lambda are the vector vec a=2 hat i+lambda hat j+ hat k\ a n d\ vec b= hat i-2 hat j+3 hat k perpendicular to each other?

The number of distinct real values of lambda , for which the vectors -lambda^2 hat i+ hat j+k , hat i-lambda^2 hat j+ hat ka n d hat i+ hat j-lambda^2 hat k are coplanar is a. zero b. one c. two d. three

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. The angle between two vectors vec(a) and vec(b) with magnitudes sqrt(3...

    Text Solution

    |

  2. The angle between the vectors hat(i) - hat(j) and hat(j) - hat(k) is ...

    Text Solution

    |

  3. The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + h...

    Text Solution

    |

  4. If the angle between the vectors hat(i) + hat(k) and hat(i) + hat(j) ...

    Text Solution

    |

  5. If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) ,...

    Text Solution

    |

  6. If vec(a) and vec(b) are unit vectors, then the angle between vec(a) a...

    Text Solution

    |

  7. If theta is the angle between two vectors vec(a) and vec(b), then vec(...

    Text Solution

    |

  8. The projection of the vector hat(i) +hat(j) + hat(k) along vector hat(...

    Text Solution

    |

  9. The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along...

    Text Solution

    |

  10. If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j)...

    Text Solution

    |

  11. If | vec(a) | =3 and |vec(b) |=4, then the value of lambda for which v...

    Text Solution

    |

  12. (vec(a). hat(i) )^(2) + ( vec(a).hat(j))^(2) + ( vec(a) . hat(k))^(2) ...

    Text Solution

    |

  13. If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j...

    Text Solution

    |

  14. if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) |...

    Text Solution

    |

  15. If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10, then | ...

    Text Solution

    |

  16. If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12, then | vec...

    Text Solution

    |

  17. If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2, then | vec( a) |^...

    Text Solution

    |

  18. If |vec(a) | = 8 , | vec(b) =3 and | vec( a) xx vec( b) |=12 , then t...

    Text Solution

    |

  19. If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b...

    Text Solution

    |

  20. The number of unit vectors perpendicular to the vector vec(a) = 2 hat(...

    Text Solution

    |