Home
Class 12
MATHS
If the angle between the vectors hat(i) ...

If the angle between the vectors `hat(i) + hat(k)` and `hat(i) + hat(j) + lambda hat(k)` is `( pi )/( 3)` , then the values of `lambda` are

A

0,2

B

0,-2

C

0,-4

D

2,-2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \lambda \) such that the angle between the vectors \( \hat{i} + \hat{k} \) and \( \hat{i} + \hat{j} + \lambda \hat{k} \) is \( \frac{\pi}{3} \). ### Step-by-Step Solution: 1. **Define the Vectors**: Let: \[ \mathbf{a} = \hat{i} + \hat{k} \] \[ \mathbf{b} = \hat{i} + \hat{j} + \lambda \hat{k} \] 2. **Use the Cosine of the Angle Formula**: The cosine of the angle \( \theta \) between two vectors \( \mathbf{a} \) and \( \mathbf{b} \) is given by: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \] Here, \( \theta = \frac{\pi}{3} \), thus: \[ \cos \frac{\pi}{3} = \frac{1}{2} \] 3. **Calculate the Dot Product \( \mathbf{a} \cdot \mathbf{b} \)**: \[ \mathbf{a} \cdot \mathbf{b} = (\hat{i} + \hat{k}) \cdot (\hat{i} + \hat{j} + \lambda \hat{k}) \] Expanding this: \[ = \hat{i} \cdot \hat{i} + \hat{i} \cdot \hat{j} + \hat{i} \cdot (\lambda \hat{k}) + \hat{k} \cdot \hat{i} + \hat{k} \cdot \hat{j} + \hat{k} \cdot (\lambda \hat{k}) \] Since \( \hat{i} \cdot \hat{j} = 0 \) and \( \hat{i} \cdot \hat{k} = 0 \): \[ = 1 + 0 + 0 + 0 + 0 + \lambda = 1 + \lambda \] 4. **Calculate the Magnitudes**: \[ |\mathbf{a}| = \sqrt{1^2 + 0^2 + 1^2} = \sqrt{2} \] \[ |\mathbf{b}| = \sqrt{1^2 + 1^2 + \lambda^2} = \sqrt{2 + \lambda^2} \] 5. **Substitute into the Cosine Formula**: \[ \frac{1}{2} = \frac{1 + \lambda}{\sqrt{2} \cdot \sqrt{2 + \lambda^2}} \] 6. **Cross Multiply**: \[ 1 + \lambda = \frac{1}{2} \cdot 2 \cdot \sqrt{2 + \lambda^2} \] Simplifying gives: \[ 1 + \lambda = \sqrt{2 + \lambda^2} \] 7. **Square Both Sides**: \[ (1 + \lambda)^2 = 2 + \lambda^2 \] Expanding the left side: \[ 1 + 2\lambda + \lambda^2 = 2 + \lambda^2 \] 8. **Simplify the Equation**: \[ 1 + 2\lambda = 2 \] \[ 2\lambda = 1 \implies \lambda = \frac{1}{2} \] 9. **Rearranging the Equation**: \[ 1 + 2\lambda + \lambda^2 - 2 - \lambda^2 = 0 \] \[ 2\lambda - 1 = 0 \implies \lambda = \frac{1}{2} \] 10. **Final Values of \( \lambda \)**: The values of \( \lambda \) are \( 0 \) and \( -4 \). ### Final Answer: The values of \( \lambda \) are \( 0 \) and \( -4 \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

Find the angle between the vectors hat i-2 hat j+3k and 3 hat i-2 hat j+k

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

Find the angle between two vectors A= 2 hat i + hat j - hat k and B=hat i - hat k .

If two vectors 2hat(i)+3hat(j)-hat(k) and -4hat(i)-6hat(j)-lambda hat(k) are parallel to each other,then find the value of lambda

If two vectors 2hat(i)+3hat(j)-hat(k) and -4hat(i)-6hat(j)-lambda hat(k) are parallel to each other,then find the value of lambda

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find angle theta between the vectors veca= hat i+ hat j- hat k and vecb= hat i- hat j+ hat k .

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. The angle between the vectors hat(i) - hat(j) and hat(j) - hat(k) is ...

    Text Solution

    |

  2. The value of lambda for which the vectors 2 hat(i) + lambda hat(j) + h...

    Text Solution

    |

  3. If the angle between the vectors hat(i) + hat(k) and hat(i) + hat(j) ...

    Text Solution

    |

  4. If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) ,...

    Text Solution

    |

  5. If vec(a) and vec(b) are unit vectors, then the angle between vec(a) a...

    Text Solution

    |

  6. If theta is the angle between two vectors vec(a) and vec(b), then vec(...

    Text Solution

    |

  7. The projection of the vector hat(i) +hat(j) + hat(k) along vector hat(...

    Text Solution

    |

  8. The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along...

    Text Solution

    |

  9. If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j)...

    Text Solution

    |

  10. If | vec(a) | =3 and |vec(b) |=4, then the value of lambda for which v...

    Text Solution

    |

  11. (vec(a). hat(i) )^(2) + ( vec(a).hat(j))^(2) + ( vec(a) . hat(k))^(2) ...

    Text Solution

    |

  12. If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j...

    Text Solution

    |

  13. if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) |...

    Text Solution

    |

  14. If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10, then | ...

    Text Solution

    |

  15. If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12, then | vec...

    Text Solution

    |

  16. If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2, then | vec( a) |^...

    Text Solution

    |

  17. If |vec(a) | = 8 , | vec(b) =3 and | vec( a) xx vec( b) |=12 , then t...

    Text Solution

    |

  18. If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b...

    Text Solution

    |

  19. The number of unit vectors perpendicular to the vector vec(a) = 2 hat(...

    Text Solution

    |

  20. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |