Home
Class 12
MATHS
The projection of the vector hat(i) +hat...

The projection of the vector `hat(i) +hat(j) + hat(k)` along vector `hat(j)` is

A

1

B

2

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \(\hat{i} + \hat{j} + \hat{k}\) along the vector \(\hat{j}\), we can follow these steps: ### Step 1: Define the vectors Let: - \(\mathbf{A} = \hat{i} + \hat{j} + \hat{k}\) - \(\mathbf{B} = \hat{j}\) ### Step 2: Use the projection formula The projection of vector \(\mathbf{A}\) onto vector \(\mathbf{B}\) is given by the formula: \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|^2} \mathbf{B} \] ### Step 3: Calculate the dot product \(\mathbf{A} \cdot \mathbf{B}\) To find \(\mathbf{A} \cdot \mathbf{B}\): \[ \mathbf{A} \cdot \mathbf{B} = (\hat{i} + \hat{j} + \hat{k}) \cdot \hat{j} \] Calculating the dot product: \[ \hat{i} \cdot \hat{j} = 0, \quad \hat{j} \cdot \hat{j} = 1, \quad \hat{k} \cdot \hat{j} = 0 \] Thus, \[ \mathbf{A} \cdot \mathbf{B} = 0 + 1 + 0 = 1 \] ### Step 4: Calculate the magnitude of \(\mathbf{B}\) The magnitude of \(\mathbf{B}\) is: \[ |\mathbf{B}| = |\hat{j}| = 1 \] ### Step 5: Substitute into the projection formula Now substitute the values into the projection formula: \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{1}{1^2} \mathbf{B} = 1 \cdot \hat{j} = \hat{j} \] ### Conclusion The projection of the vector \(\hat{i} + \hat{j} + \hat{k}\) along the vector \(\hat{j}\) is: \[ \hat{j} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos
ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. If vec(a) and vec(b) are unit vectors, then the angle between vec(a) a...

    Text Solution

    |

  2. If theta is the angle between two vectors vec(a) and vec(b), then vec(...

    Text Solution

    |

  3. The projection of the vector hat(i) +hat(j) + hat(k) along vector hat(...

    Text Solution

    |

  4. The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along...

    Text Solution

    |

  5. If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j)...

    Text Solution

    |

  6. If | vec(a) | =3 and |vec(b) |=4, then the value of lambda for which v...

    Text Solution

    |

  7. (vec(a). hat(i) )^(2) + ( vec(a).hat(j))^(2) + ( vec(a) . hat(k))^(2) ...

    Text Solution

    |

  8. If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j...

    Text Solution

    |

  9. if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) |...

    Text Solution

    |

  10. If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10, then | ...

    Text Solution

    |

  11. If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12, then | vec...

    Text Solution

    |

  12. If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2, then | vec( a) |^...

    Text Solution

    |

  13. If |vec(a) | = 8 , | vec(b) =3 and | vec( a) xx vec( b) |=12 , then t...

    Text Solution

    |

  14. If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b...

    Text Solution

    |

  15. The number of unit vectors perpendicular to the vector vec(a) = 2 hat(...

    Text Solution

    |

  16. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  17. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  18. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  19. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  20. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |