Home
Class 12
MATHS
The projection of the vector vec( a) = 2...

The projection of the vector `vec( a) = 2 hat(i) - hat(j) +hat(k)` along the vector `vec(b) = hat(i) + 2 hat(j)+ 2hat(k)` is

A

2

B

`sqrt(6)`

C

`(2)/(3)`

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector \(\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}\) along the vector \(\vec{b} = \hat{i} + 2 \hat{j} + 2 \hat{k}\), we can use the formula for the projection of vector \(\vec{a}\) onto vector \(\vec{b}\): \[ \text{Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b} \] ### Step 1: Calculate the dot product \(\vec{a} \cdot \vec{b}\) \[ \vec{a} \cdot \vec{b} = (2 \hat{i} - \hat{j} + \hat{k}) \cdot (\hat{i} + 2 \hat{j} + 2 \hat{k}) \] Calculating the dot product: \[ = 2 \cdot 1 + (-1) \cdot 2 + 1 \cdot 2 \] \[ = 2 - 2 + 2 = 2 \] ### Step 2: Calculate the magnitude squared of \(\vec{b}\) \[ |\vec{b}|^2 = (\hat{i} + 2 \hat{j} + 2 \hat{k}) \cdot (\hat{i} + 2 \hat{j} + 2 \hat{k}) \] Calculating the magnitude squared: \[ = 1^2 + 2^2 + 2^2 = 1 + 4 + 4 = 9 \] ### Step 3: Substitute the values into the projection formula Now we can substitute the values we found into the projection formula: \[ \text{Projection of } \vec{a} \text{ on } \vec{b} = \frac{2}{9} \vec{b} \] ### Step 4: Write the final projection vector Substituting \(\vec{b}\): \[ = \frac{2}{9} (\hat{i} + 2 \hat{j} + 2 \hat{k}) = \frac{2}{9} \hat{i} + \frac{4}{9} \hat{j} + \frac{4}{9} \hat{k} \] Thus, the projection of the vector \(\vec{a}\) along the vector \(\vec{b}\) is: \[ \frac{2}{9} \hat{i} + \frac{4}{9} \hat{j} + \frac{4}{9} \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k) on the vector vec(Q) = hat(i) + 2hat(j) + 2hat(k)

The projection of the vector vec(a) +hat(J) + hat(k) along vector hat(j) is

Find the projection of the vector vec a=2 hat i+3 hat j+2 hat k on the vector vec b=2 hat i+2 hat j+ hat k .

Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i) - 6 hat(j) - 3 hat(k) and vec(b) = 4 hat(i) + 3 hat(j) - hat(k) are

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is

Write the value of lamda so that the vectors vec(a)= 2hat(i) + lamda hat(j) + hat(k) and vec(b)= hat(i) - 2hat(j) + 3hat(k) are perpendicular to each other?

Determine lambda such that a vector vec(r) is at right angles to each of the vectors vec(a) = lambda hat(i) + hat(j) + 3hat(k), vec(b) = 2hat(i) + hat(j) - lambda hat(k), vec(c) = -2hat(i) + lambda hat(j) + 3hat(k) .

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. If theta is the angle between two vectors vec(a) and vec(b), then vec(...

    Text Solution

    |

  2. The projection of the vector hat(i) +hat(j) + hat(k) along vector hat(...

    Text Solution

    |

  3. The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along...

    Text Solution

    |

  4. If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j)...

    Text Solution

    |

  5. If | vec(a) | =3 and |vec(b) |=4, then the value of lambda for which v...

    Text Solution

    |

  6. (vec(a). hat(i) )^(2) + ( vec(a).hat(j))^(2) + ( vec(a) . hat(k))^(2) ...

    Text Solution

    |

  7. If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j...

    Text Solution

    |

  8. if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) |...

    Text Solution

    |

  9. If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10, then | ...

    Text Solution

    |

  10. If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12, then | vec...

    Text Solution

    |

  11. If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2, then | vec( a) |^...

    Text Solution

    |

  12. If |vec(a) | = 8 , | vec(b) =3 and | vec( a) xx vec( b) |=12 , then t...

    Text Solution

    |

  13. If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b...

    Text Solution

    |

  14. The number of unit vectors perpendicular to the vector vec(a) = 2 hat(...

    Text Solution

    |

  15. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  16. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  17. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  18. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  19. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  20. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |