Home
Class 12
MATHS
If vec(a) = 2 hat(i) + hat(j) + 2hat(k) ...

If `vec(a) = 2 hat(i) + hat(j) + 2hat(k)` and `vec(b) = 5hat(i)- 3 hat(j) + hat(k)` , then the projection of `vec(b)` on ` vec(a)` is

A

3

B

4

C

5

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of vector **b** on vector **a**, we will use the formula for projection: \[ \text{Projection of } \vec{b} \text{ on } \vec{a} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} \] ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} \] \[ \vec{b} = 5\hat{i} - 3\hat{j} + \hat{k} \] ### Step 2: Calculate the dot product \(\vec{b} \cdot \vec{a}\) The dot product is calculated as follows: \[ \vec{b} \cdot \vec{a} = (5\hat{i} - 3\hat{j} + \hat{k}) \cdot (2\hat{i} + \hat{j} + 2\hat{k}) \] Using the properties of dot product: \[ = 5 \cdot 2 + (-3) \cdot 1 + 1 \cdot 2 \] Calculating each term: \[ = 10 - 3 + 2 = 9 \] ### Step 3: Calculate the magnitude of vector \(\vec{a}\) The magnitude of vector \(\vec{a}\) is given by: \[ |\vec{a}| = \sqrt{(2)^2 + (1)^2 + (2)^2} \] Calculating: \[ = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] ### Step 4: Calculate the projection Now, substituting the values into the projection formula: \[ \text{Projection of } \vec{b} \text{ on } \vec{a} = \frac{9}{3} = 3 \] ### Final Answer The projection of vector **b** on vector **a** is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx vec(b) = hat(j)-hat(k) , then the vector vec(b) is

If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) , find the sine of the angle between vec(a) and vec(B)

If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. The projection of the vector hat(i) +hat(j) + hat(k) along vector hat(...

    Text Solution

    |

  2. The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along...

    Text Solution

    |

  3. If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j)...

    Text Solution

    |

  4. If | vec(a) | =3 and |vec(b) |=4, then the value of lambda for which v...

    Text Solution

    |

  5. (vec(a). hat(i) )^(2) + ( vec(a).hat(j))^(2) + ( vec(a) . hat(k))^(2) ...

    Text Solution

    |

  6. If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j...

    Text Solution

    |

  7. if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) |...

    Text Solution

    |

  8. If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10, then | ...

    Text Solution

    |

  9. If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12, then | vec...

    Text Solution

    |

  10. If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2, then | vec( a) |^...

    Text Solution

    |

  11. If |vec(a) | = 8 , | vec(b) =3 and | vec( a) xx vec( b) |=12 , then t...

    Text Solution

    |

  12. If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b...

    Text Solution

    |

  13. The number of unit vectors perpendicular to the vector vec(a) = 2 hat(...

    Text Solution

    |

  14. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  15. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  16. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  17. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  18. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  19. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  20. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |