Home
Class 12
MATHS
If | vec(a) | =3 and |vec(b) |=4, then t...

If `| vec(a) | =3` and `|vec(b) |=4`, then the value of `lambda` for which `vec(a) + lambda vec(b) ` and `vec(a) - lambda vec(b)` are perpendicular is

A

`(9)/( 16)`

B

`(3)/(4)`

C

`(3)/(2)`

D

`(4)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) for which the vectors \( \vec{a} + \lambda \vec{b} \) and \( \vec{a} - \lambda \vec{b} \) are perpendicular. ### Step-by-Step Solution: 1. **Understanding the Condition for Perpendicular Vectors**: Two vectors \( \vec{u} \) and \( \vec{v} \) are perpendicular if their dot product is zero: \[ \vec{u} \cdot \vec{v} = 0 \] 2. **Setting Up the Vectors**: Let \( \vec{u} = \vec{a} + \lambda \vec{b} \) and \( \vec{v} = \vec{a} - \lambda \vec{b} \). 3. **Calculating the Dot Product**: We need to calculate the dot product \( \vec{u} \cdot \vec{v} \): \[ \vec{u} \cdot \vec{v} = (\vec{a} + \lambda \vec{b}) \cdot (\vec{a} - \lambda \vec{b}) \] 4. **Expanding the Dot Product**: Using the distributive property of the dot product, we have: \[ \vec{u} \cdot \vec{v} = \vec{a} \cdot \vec{a} - \lambda \vec{a} \cdot \vec{b} + \lambda \vec{b} \cdot \vec{a} - \lambda^2 \vec{b} \cdot \vec{b} \] Since \( \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \), this simplifies to: \[ \vec{u} \cdot \vec{v} = |\vec{a}|^2 - \lambda^2 |\vec{b}|^2 \] 5. **Substituting the Magnitudes**: We know that \( |\vec{a}| = 3 \) and \( |\vec{b}| = 4 \). Therefore: \[ |\vec{a}|^2 = 3^2 = 9 \quad \text{and} \quad |\vec{b}|^2 = 4^2 = 16 \] Substituting these values gives: \[ \vec{u} \cdot \vec{v} = 9 - \lambda^2 \cdot 16 \] 6. **Setting the Dot Product to Zero**: For the vectors to be perpendicular, we set the dot product to zero: \[ 9 - 16\lambda^2 = 0 \] 7. **Solving for \( \lambda^2 \)**: Rearranging the equation gives: \[ 16\lambda^2 = 9 \] Dividing both sides by 16: \[ \lambda^2 = \frac{9}{16} \] 8. **Taking the Square Root**: Taking the square root of both sides gives: \[ \lambda = \pm \frac{3}{4} \] 9. **Choosing the Positive Value**: Since the options provided are positive, we take: \[ \lambda = \frac{3}{4} \] ### Final Answer: The value of \( \lambda \) for which \( \vec{a} + \lambda \vec{b} \) and \( \vec{a} - \lambda \vec{b} \) are perpendicular is: \[ \lambda = \frac{3}{4} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If |vec(a)| = 3, |vec(b)| = 4 , then the value 'lambda' for which vec(a) + lambda vec(b) is perpendicular to vec(a) - lambda vec(b) , is

If vec p=5 hat i+lambda hat j-3 hat k and vec q= hat i+3 hat j-5 hat k , then find the value of lambda , so that vec p+ vec q and vec p- vec q are perpendicular vectors.

If vec a= hat i-\ hat j+7 hat k and vec b=5 hat i-\ hat j+lambda hat k , then find the value of lambda, so that vec a+ vec b and vec a- vec b are perpendicular vectors.

|vec(a)|=2, |vec(b)|=3 and vec(a).vec(b)= -8 , then the value of |vec(a) + 3vec(b)| is

If abs(vec(a)+vec(b))=abs(vec(a)-vec(b)) , then show that vec(a) and vec(b) are perpendicular to each other.

If vec p=5 hat i+lambda hat j-3 hat k\ a n d\ vec q= hat i+3 hat j-5 hat k , then find the value of lambda such that vec p+ vec q and vec p- vec q are perpendicular vectors.

If (vec(a) + vec(b)) _|_ vec(b) and (vec(a) + 2 vec(b))_|_ vec(a) , then

If | vec a|=| vec b|=| vec a+ vec b|=1, then find the value of | vec a- vec b|dot

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

If [ 2 vec (a) - 3 vec(b) vec( c ) vec(d)] =lambda [vec(a) vec(c ) vec(d) ] + mu [ vec(b) vec( c ) vec( d) ] , then 2 lambda + 3 mu=

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along...

    Text Solution

    |

  2. If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j)...

    Text Solution

    |

  3. If | vec(a) | =3 and |vec(b) |=4, then the value of lambda for which v...

    Text Solution

    |

  4. (vec(a). hat(i) )^(2) + ( vec(a).hat(j))^(2) + ( vec(a) . hat(k))^(2) ...

    Text Solution

    |

  5. If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j...

    Text Solution

    |

  6. if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) |...

    Text Solution

    |

  7. If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10, then | ...

    Text Solution

    |

  8. If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12, then | vec...

    Text Solution

    |

  9. If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2, then | vec( a) |^...

    Text Solution

    |

  10. If |vec(a) | = 8 , | vec(b) =3 and | vec( a) xx vec( b) |=12 , then t...

    Text Solution

    |

  11. If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b...

    Text Solution

    |

  12. The number of unit vectors perpendicular to the vector vec(a) = 2 hat(...

    Text Solution

    |

  13. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  14. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  15. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  16. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  17. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  18. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  19. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  20. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |