Home
Class 12
MATHS
if | vec(a) xx vec(b) |^(2) +| vec(a). v...

if `| vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144` and `| vec(a) | =4` then `|vec(b) |` is equal to

A

12

B

3

C

4

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to use the given equation and the properties of vectors. Let's break it down step by step. ### Given: 1. \( |\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 144 \) 2. \( |\vec{a}| = 4 \) ### Step 1: Use the properties of vector operations We know that: - \( |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \) - \( |\vec{a} \cdot \vec{b}| = |\vec{a}| |\vec{b}| \cos \theta \) where \( \theta \) is the angle between the vectors \( \vec{a} \) and \( \vec{b} \). ### Step 2: Substitute the expressions into the equation Substituting the expressions for the cross product and dot product into the given equation: \[ (|\vec{a}| |\vec{b}| \sin \theta)^2 + (|\vec{a}| |\vec{b}| \cos \theta)^2 = 144 \] ### Step 3: Simplify the equation This simplifies to: \[ |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta + |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta = 144 \] Factoring out \( |\vec{a}|^2 |\vec{b}|^2 \): \[ |\vec{a}|^2 |\vec{b}|^2 (\sin^2 \theta + \cos^2 \theta) = 144 \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \), we have: \[ |\vec{a}|^2 |\vec{b}|^2 = 144 \] ### Step 4: Substitute the known value of \( |\vec{a}| \) Now, substituting \( |\vec{a}| = 4 \): \[ (4)^2 |\vec{b}|^2 = 144 \] This simplifies to: \[ 16 |\vec{b}|^2 = 144 \] ### Step 5: Solve for \( |\vec{b}|^2 \) Dividing both sides by 16: \[ |\vec{b}|^2 = \frac{144}{16} \] Calculating the right side: \[ |\vec{b}|^2 = 9 \] ### Step 6: Take the square root to find \( |\vec{b}| \) Taking the square root of both sides: \[ |\vec{b}| = 3 \] ### Final Answer: Thus, \( |\vec{b}| = 3 \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

If |vec(a) xx vec(b)|^(2) + |vec(a) .vec(b)|^(2) = 400 and |vec(a)| = 5 , then write the value of |vec(b)| .

If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10 , then | vec(a). vec(b) |^(2) is equal to

If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12 , then | vec(a) xx vec(b) | is equal to

Find vec(a) * vec(b) if |vec(a)| = 6, |vec(b)| = 4 and |vec(a) xx vec(b)| = 12

If ( vec axx vec b)^2+( vec a.vec b)^2=144 and | vec a|=4, then find the value of | vec b|dot

If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1 , then

If | vec axx vec b|^2=( vec adot vec b)^2=144\ a n d\ | vec a|=4 , find vec bdot

Simplify : (i) | vec(a).vec(b)|^(2) +| vec(a) xx vec(b)|^(2) (ii) | vec(a).vec(b)|^(2)- |vec(a) xx vec(b)|^(2)

If (vec(a) + vec(b)) _|_ vec(b) and (vec(a) + 2 vec(b))_|_ vec(a) , then

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. (vec(a). hat(i) )^(2) + ( vec(a).hat(j))^(2) + ( vec(a) . hat(k))^(2) ...

    Text Solution

    |

  2. If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j...

    Text Solution

    |

  3. if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) |...

    Text Solution

    |

  4. If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10, then | ...

    Text Solution

    |

  5. If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12, then | vec...

    Text Solution

    |

  6. If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2, then | vec( a) |^...

    Text Solution

    |

  7. If |vec(a) | = 8 , | vec(b) =3 and | vec( a) xx vec( b) |=12 , then t...

    Text Solution

    |

  8. If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b...

    Text Solution

    |

  9. The number of unit vectors perpendicular to the vector vec(a) = 2 hat(...

    Text Solution

    |

  10. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  11. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  12. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  13. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  14. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  15. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  16. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  17. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  18. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  19. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  20. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |