Home
Class 12
MATHS
If |vec(a) | = 3, | vec(b) | =4 and | ve...

If `|vec(a) | = 3, | vec(b) | =4` and `| vec(a) xx vec(b) | = 10`, then `| vec(a). vec(b) |^(2)` is equal to

A

22

B

88

C

44

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the Given Information We are given: - \( |\vec{a}| = 3 \) - \( |\vec{b}| = 4 \) - \( |\vec{a} \times \vec{b}| = 10 \) ### Step 2: Use the Formula for the Magnitude of the Cross Product The magnitude of the cross product of two vectors can be expressed as: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] where \( \theta \) is the angle between the two vectors. ### Step 3: Substitute the Known Values into the Formula Substituting the known values into the formula: \[ 10 = 3 \cdot 4 \cdot \sin \theta \] This simplifies to: \[ 10 = 12 \sin \theta \] ### Step 4: Solve for \( \sin \theta \) To find \( \sin \theta \), we rearrange the equation: \[ \sin \theta = \frac{10}{12} = \frac{5}{6} \] ### Step 5: Use the Pythagorean Identity to Find \( \cos \theta \) We know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \( \sin \theta \): \[ \left(\frac{5}{6}\right)^2 + \cos^2 \theta = 1 \] Calculating \( \left(\frac{5}{6}\right)^2 \): \[ \frac{25}{36} + \cos^2 \theta = 1 \] Rearranging gives: \[ \cos^2 \theta = 1 - \frac{25}{36} = \frac{36 - 25}{36} = \frac{11}{36} \] ### Step 6: Use the Dot Product Formula The dot product of two vectors can be expressed as: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Substituting the known values: \[ \vec{a} \cdot \vec{b} = 3 \cdot 4 \cdot \cos \theta \] We know \( \cos \theta = \sqrt{\frac{11}{36}} = \frac{\sqrt{11}}{6} \): \[ \vec{a} \cdot \vec{b} = 12 \cdot \frac{\sqrt{11}}{6} = 2\sqrt{11} \] ### Step 7: Find \( |\vec{a} \cdot \vec{b}|^2 \) Now we need to find \( |\vec{a} \cdot \vec{b}|^2 \): \[ |\vec{a} \cdot \vec{b}|^2 = (2\sqrt{11})^2 = 4 \cdot 11 = 44 \] ### Final Answer Thus, the value of \( |\vec{a} \cdot \vec{b}|^2 \) is \( \boxed{44} \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ICSE|Exercise MULTIPLE CHOICE QUESTION |52 Videos
  • THREE DIMENSIONAL GEOMETRY

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS|42 Videos

Similar Questions

Explore conceptually related problems

If | vec(a) | = | vec( b) | =1 and | vec(a ) xx vec( b)| =1 , then

If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12 , then | vec(a) xx vec(b) | is equal to

|vec(a)|=2, |vec(b)|=3 and vec(a).vec(b)= -8 , then the value of |vec(a) + 3vec(b)| is

If vec(a) and vec( b) are inclined at an angle of 120^(@) and |vec(a)| =1, |vec(b)|=2 , then t ((vec(a) + 3 vec(b)) xx (3 vec(a) - vec(b)))^(2) is equal to

Find vec(a) * vec(b) if |vec(a)| = 6, |vec(b)| = 4 and |vec(a) xx vec(b)| = 12

If (vec(a) + vec(b)) _|_ vec(b) and (vec(a) + 2 vec(b))_|_ vec(a) , then

if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) | =4 then |vec(b) | is equal to

If |vec(A)| = 4N, |vec(B)| = 3N the value of |vec(A) xx vec(B)|^(2) + |vec(A).vec(B)|^(2) =

If vec(a).vec(b)=0 and vec(a) xx vec(b)=0, " prove that " vec(a)= vec(0) or vec(b)=vec(0) .

ICSE-VECTORS -MULTIPLE CHOICE QUESTION
  1. If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j...

    Text Solution

    |

  2. if | vec(a) xx vec(b) |^(2) +| vec(a). vec(b)|^(2)= 144 and | vec(a) |...

    Text Solution

    |

  3. If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10, then | ...

    Text Solution

    |

  4. If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12, then | vec...

    Text Solution

    |

  5. If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2, then | vec( a) |^...

    Text Solution

    |

  6. If |vec(a) | = 8 , | vec(b) =3 and | vec( a) xx vec( b) |=12 , then t...

    Text Solution

    |

  7. If vec(a) + vec(b) + vec( c ) = vec(0), |vec(a) | = sqrt( 37), | vec(b...

    Text Solution

    |

  8. The number of unit vectors perpendicular to the vector vec(a) = 2 hat(...

    Text Solution

    |

  9. Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) +...

    Text Solution

    |

  10. Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i)...

    Text Solution

    |

  11. A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(...

    Text Solution

    |

  12. The area ( in sq. units ) of a parallelogram whose adjacent sides are ...

    Text Solution

    |

  13. If vec( AB) xx vec(AC) =2 hat(i)-4 hat(j) + 4 hat(k) , then area of De...

    Text Solution

    |

  14. The vectors from origin to the points A and B are vec(a) = 2 hat(i) - ...

    Text Solution

    |

  15. The area ( in sq. units ) of the triangle having vertices with positi...

    Text Solution

    |

  16. If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + ...

    Text Solution

    |

  17. If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b)...

    Text Solution

    |

  18. The value ( in cubic units ) of the parallelopiped whose coterminus ed...

    Text Solution

    |

  19. If vec(a) = 2 hat(i) - 3hat(j) + 2 hat(k), vec(b)= 2hat(i)-4 hat(k) an...

    Text Solution

    |

  20. If vec(a) is perpendicular to vec(b) and vec( c ),| vec(a) |=2, |vec(b...

    Text Solution

    |